The Picard group of a coarse moduli space of vector bundles in positive characteristic
Open Mathematics (2012)
- Volume: 10, Issue: 4, page 1306-1313
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topNorbert Hoffmann. "The Picard group of a coarse moduli space of vector bundles in positive characteristic." Open Mathematics 10.4 (2012): 1306-1313. <http://eudml.org/doc/269083>.
@article{NorbertHoffmann2012,
abstract = {Let C be a smooth projective curve over an algebraically closed field of arbitrary characteristic. Let M r,Lss denote the projective coarse moduli scheme of semistable rank r vector bundles over C with fixed determinant L. We prove Pic(M r,Lss) = ℤ, identify the ample generator, and deduce that M r,Lss is locally factorial. In characteristic zero, this has already been proved by Drézet and Narasimhan. The main point of the present note is to circumvent the usual problems with Geometric Invariant Theory in positive characteristic.},
author = {Norbert Hoffmann},
journal = {Open Mathematics},
keywords = {Moduli space; Vector bundle; Picard group; Positive characteristic; moduli space; vector bundle; positive characteristic},
language = {eng},
number = {4},
pages = {1306-1313},
title = {The Picard group of a coarse moduli space of vector bundles in positive characteristic},
url = {http://eudml.org/doc/269083},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Norbert Hoffmann
TI - The Picard group of a coarse moduli space of vector bundles in positive characteristic
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1306
EP - 1313
AB - Let C be a smooth projective curve over an algebraically closed field of arbitrary characteristic. Let M r,Lss denote the projective coarse moduli scheme of semistable rank r vector bundles over C with fixed determinant L. We prove Pic(M r,Lss) = ℤ, identify the ample generator, and deduce that M r,Lss is locally factorial. In characteristic zero, this has already been proved by Drézet and Narasimhan. The main point of the present note is to circumvent the usual problems with Geometric Invariant Theory in positive characteristic.
LA - eng
KW - Moduli space; Vector bundle; Picard group; Positive characteristic; moduli space; vector bundle; positive characteristic
UR - http://eudml.org/doc/269083
ER -
References
top- [1] Beauville A., Laszlo Y., Conformal blocks and generalized theta functions, Commun. Math. Phys., 1994, 164(2), 385–419 http://dx.doi.org/10.1007/BF02101707 Zbl0815.14015
- [2] Bhosle U.N., Moduli of vector bundles in characteristic 2, Math. Nachr., 2003, 254/255, 11–26 http://dx.doi.org/10.1002/mana.200310049 Zbl1056.14044
- [3] Biswas I., Hoffmann N., The line bundles on moduli stacks of principal bundles on a curve, Doc. Math., 2010, 15, 35–72 Zbl1193.14009
- [4] Biswas I., Hoffmann N., Poincaré families of G-bundles on a curve, Math. Ann., 2012, 352(1), 133–154 http://dx.doi.org/10.1007/s00208-010-0628-x Zbl1253.14012
- [5] Drezet J.-M., Narasimhan M.S., Groupe de Picard des variétés de modules de fibrés semi-stable sur les courbes algébriques, Invent. Math., 1989, 97(1), 53–94 http://dx.doi.org/10.1007/BF01850655 Zbl0689.14012
- [6] Faltings G., Stable G-bundles and projective connections, J. Algebraic Geom., 1993, 2(3), 507–568 Zbl0790.14019
- [7] Faltings G., Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS), 2003, 5(1), 41–68 http://dx.doi.org/10.1007/s10097-002-0045-x Zbl1020.14002
- [8] Grothendieck A., Éléments de Géométrie Algébrique. III. Étude Cohomologique des Faisceaux Cohérents. I, II, Inst. Hautes Études Sci. Publ. Math., 11, 17, Presses Universitaires de France, Paris, 1961, 1963
- [9] Hoffmann N., Moduli stacks of vector bundles on curves and the King-Schofield rationality proof, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 133–148 http://dx.doi.org/10.1007/978-0-8176-4934-0_5 Zbl1203.14038
- [10] Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010 http://dx.doi.org/10.1017/CBO9780511711985 Zbl1206.14027
- [11] Joshi K., Mehta V.B., On the Picard group of moduli spaces, preprint available at http://arxiv.org/abs/1005.3007
- [12] Knudsen F.F., Mumford D., The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand., 1976, 39(1), 19–55 Zbl0343.14008
- [13] Mumford D., Fogarty J., Kirwan F., Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb., 34, Springer, Berlin, 1994 http://dx.doi.org/10.1007/978-3-642-57916-5 Zbl0797.14004
- [14] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. Math., 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807 Zbl0186.54902
- [15] Osserman B., The generalized Verschiebung map for curves of genus 2, Math. Ann., 2006, 336(4), 963–986 http://dx.doi.org/10.1007/s00208-006-0026-6 Zbl1111.14031
- [16] Seshadri C.S., Fibrés Vectoriels sur les Courbes Algébriques, Astérisque, 96, Société Mathématique de France, Paris, 1982 Zbl0517.14008
- [17] Seshadri C.S., Vector bundles on curves, In: Linear Algebraic Groups and their Representations, Los Angeles, March 25–28, 1992, Contemp. Math., 153, American Mathematical Society, Providence, 1993, 163–200 http://dx.doi.org/10.1090/conm/153/01312 Zbl0799.14013
- [18] Venkata Balaji T.E., Mehta V.B., Singularities of moduli spaces of vector bundles over curves in characteristic 0 and p, Michigan Math. J., 2008, 57, 37–42 http://dx.doi.org/10.1307/mmj/1220879395 Zbl1181.14037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.