A parameter-free smoothness indicator for high-resolution finite element schemes
Dmitri Kuzmin; Friedhelm Schieweck
Open Mathematics (2013)
- Volume: 11, Issue: 8, page 1478-1488
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Cockburn B., Shu C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys., 1998, 141(2), 199–224 http://dx.doi.org/10.1006/jcph.1998.5892
- [2] Dolejší V., Feistauer M., On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow, In: Numerical Mathematics and Advanced Applications, Ischia, July, 2001, Springer, Milan, 2003, 65–83 Zbl1276.76039
- [3] John V., Schmeyer E., On finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 2008, 198(3–4), 475–494 http://dx.doi.org/10.1016/j.cma.2008.08.016 Zbl1228.76088
- [4] Krivodonova L., Xin J., Remacle J.-F., Chevaugeon N., Flaherty J.E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, In: Workshop on Innovative Time Integrators for PDEs, Appl. Numer. Math., 2004, 48(3–4), 323–338 http://dx.doi.org/10.1016/j.apnum.2003.11.002 Zbl1038.65096
- [5] Kuzmin D., Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys., 2009, 228(7), 2517–2534 http://dx.doi.org/10.1016/j.jcp.2008.12.011 Zbl1275.76171
- [6] Kuzmin D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 2010, 233(12), 3077–3085 http://dx.doi.org/10.1016/j.cam.2009.05.028 Zbl1252.76045
- [7] Kuzmin D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Internat. J. Numer. Methods Fluids, 2013, 71(9), 1178–1190 http://dx.doi.org/10.1002/fld.3707
- [8] Kuzmin D., Möller M., Algebraic flux correction I. Scalar conservation laws, In: Flux-Corrected Transport, Sci. Comput., Springer, Berlin, 2005, 155–206 http://dx.doi.org/10.1007/3-540-27206-2_6 Zbl1094.76040
- [9] Kuzmin D., Turek S., Flux correction tools for finite elements, J. Comput. Phys., 2002, 175(2), 525–558 http://dx.doi.org/10.1006/jcph.2001.6955
- [10] LeVeque R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 1996, 33(2), 627–665 http://dx.doi.org/10.1137/0733033 Zbl0852.76057
- [11] Michoski C., Mirabito C., Dawson C., Wirasaet D., Kubatko E.J., Westerink J.J., Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations, J. Comput. Phys., 2010, 230(22), 8028–8056 http://dx.doi.org/10.1016/j.jcp.2011.07.009 Zbl1269.65099
- [12] Persson P.-O., Peraire J., Sub-cell shock capturing for discontinuous Galerkin methods, In: 44th AIAA Aerospace Sciences Meeting, Reno, January, 2006, preprint available at http://acdl.mit.edu/peraire/PerssonPeraire_ShockCapturing.pdf
- [13] Qiu J., Shu C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput. 2005, 27(3), 995–1013 http://dx.doi.org/10.1137/04061372X Zbl1092.65084
- [14] Schieweck F., A general transfer operator for arbitrary finite element spaces, Preprint 25/00, Otto-von-Guericke Universität Magdeburg, 2000
- [15] Schieweck F., Skrzypacz P., A local projection stabilization method with shock capturing and diagonal mass matrix for solving non-stationary transport dominated problems, Comput. Methods Appl. Math., 2012, 12(2), 221–240 Zbl1284.65174
- [16] Yang M., Wang Z.J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., 2009, 1(4), 451–480
- [17] Zalesak S.T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 1979, 31(3), 335–362 http://dx.doi.org/10.1016/0021-9991(79)90051-2 Zbl0416.76002
- [18] Zienkiewicz O.C., Zhu J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 1987, 24(2), 337–357 http://dx.doi.org/10.1002/nme.1620240206 Zbl0602.73063
- [19] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1331–1364 http://dx.doi.org/10.1002/nme.1620330702 Zbl0769.73084
- [20] Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 1992, 33(7), 1365–1382 http://dx.doi.org/10.1002/nme.1620330703 Zbl0769.73085