# Some properties of epimorphisms of Hilbert algebras

Open Mathematics (2010)

- Volume: 8, Issue: 1, page 41-52
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topDumitru Buşneag, and Mircea Ghiţă. "Some properties of epimorphisms of Hilbert algebras." Open Mathematics 8.1 (2010): 41-52. <http://eudml.org/doc/269087>.

@article{DumitruBuşneag2010,

abstract = {This paper represents a start in the study of epimorphisms in some categories of Hilbert algebras. Even if we give a complete characterization for such epimorphisms only for implication algebras, the following results will make possible the construction of some examples of epimorphisms which are not surjective functions. Also, we will show that the study of epimorphisms of Hilbert algebras is equivalent with the study of epimorphisms of Hertz algebras.},

author = {Dumitru Buşneag, Mircea Ghiţă},

journal = {Open Mathematics},

keywords = {Hilbert algebras; Hertz algebras; Implication algebras; Tarski algebras; Boole algebras; Deductive systems; Epimorphisms; implication algebras; Boolean algebras; deductive systems; epimorphisms; categories of algebraic logic},

language = {eng},

number = {1},

pages = {41-52},

title = {Some properties of epimorphisms of Hilbert algebras},

url = {http://eudml.org/doc/269087},

volume = {8},

year = {2010},

}

TY - JOUR

AU - Dumitru Buşneag

AU - Mircea Ghiţă

TI - Some properties of epimorphisms of Hilbert algebras

JO - Open Mathematics

PY - 2010

VL - 8

IS - 1

SP - 41

EP - 52

AB - This paper represents a start in the study of epimorphisms in some categories of Hilbert algebras. Even if we give a complete characterization for such epimorphisms only for implication algebras, the following results will make possible the construction of some examples of epimorphisms which are not surjective functions. Also, we will show that the study of epimorphisms of Hilbert algebras is equivalent with the study of epimorphisms of Hertz algebras.

LA - eng

KW - Hilbert algebras; Hertz algebras; Implication algebras; Tarski algebras; Boole algebras; Deductive systems; Epimorphisms; implication algebras; Boolean algebras; deductive systems; epimorphisms; categories of algebraic logic

UR - http://eudml.org/doc/269087

ER -

## References

top- [1] Balbes R., Dwinger Ph., Distributive lattices, Missouri Univ. Press, Columbia, Missouri, 1975 Zbl0231.06017
- [2] Buşneag D., Categories of algebraic logic, Editura Academiei Române, Bucharest, 2006 Zbl05191994
- [3] Celani S.A., Cabrer L.M., Duality for finite Hilbert algebras, Discrete Math., 2005, 305(1–3), 74–99 http://dx.doi.org/10.1016/j.disc.2005.09.002 Zbl1084.03050
- [4] Celani S.A., Cabrer L.M., Topological duality for Tarski algebras, Algebra Universalis, 2007, 58, 73–94 http://dx.doi.org/10.1007/s00012-007-2041-1
- [5] Diego A., Sur les algèbres de Hilbert, Collection de Logique Mathematique, Série A, 1966, 21, 1–54 (in French)
- [6] Figallo Jr A., Ziliani A., Remarks on Hertz algebras and implicative semilattices, Bull. Sect. Logic Univ. Lódz, 2005, 1(34), 37–42 Zbl1114.03312
- [7] Figallo A.V., Ramon G., Saad S., A note on the Hilbert algebras with infimum, Math. Contemp., 2003, 24, 23–37 Zbl1082.03057
- [8] Gluschankof D., Tilli M., Maximal Deductive Systems and Injective Objects in the Category of Hilbert Algebras, Zeitschr. Für Math. Logik und Grundlagen der Math., 1988, 34, 213–220 http://dx.doi.org/10.1002/malq.19880340305 Zbl0657.03032
- [9] Jun Y.B., Commutative Hilbert Algebras, Soochow J. Math., 1996, 22(4), 477–484 Zbl0864.03042
- [10] Porta H., Sur quelques algèbres de la Logique, Port. Math., 1981, 40(1), 41–77
- [11] Rasiowa H., An algebraic approach to non-classical logics, Stud. Logic Found. Math., 1974, 78
- [12] Torrens A., On The Role of The Polynomial (X → Y) → Y in Some Implicative Algebras, Zeitschr. Für Math. Logik und Grundlagen der Math., 1988, 34(2), 117–122 http://dx.doi.org/10.1002/malq.19880340205 Zbl0621.03043
- [13] Taşcău D.D., Some properties of the operation x ∪ y = (x → y) → ((y → x) → x) in a Hilbert algebra, An. Univ. Craiova Ser. Mat. Inform., 2007, 34(1), 78–81 Zbl1174.03358