∞-jets of diffeomorphisms preserving orbits of vector fields

Sergiy Maksymenko

Open Mathematics (2009)

  • Volume: 7, Issue: 2, page 272-298
  • ISSN: 2391-5455

Abstract

top
Let F be a C ∞ vector field defined near the origin O ∈ ℝn, F(O) = 0, and (Ft) be its local flow. Denote by the set of germs of orbit preserving diffeomorphisms h: ℝn → ℝn at O, and let , (r ≥ 0), be the identity component of with respect to the weak Whitney Wr topology. Then contains a subset consisting of maps of the form Fα(x)(x), where α: ℝn → ℝ runs over the space of all smooth germs at O. It was proved earlier by the author that if F is a linear vector field, then = . In this paper we present a class of examples of vector fields with degenerate singularities at O for which formally coincides with , i.e. on the level of ∞-jets at O. We also establish parameter rigidity of linear vector fields and “reduced” Hamiltonian vector fields of real homogeneous polynomials in two variables.

How to cite

top

Sergiy Maksymenko. "∞-jets of diffeomorphisms preserving orbits of vector fields." Open Mathematics 7.2 (2009): 272-298. <http://eudml.org/doc/269090>.

@article{SergiyMaksymenko2009,
abstract = {Let F be a C ∞ vector field defined near the origin O ∈ ℝn, F(O) = 0, and (Ft) be its local flow. Denote by the set of germs of orbit preserving diffeomorphisms h: ℝn → ℝn at O, and let , (r ≥ 0), be the identity component of with respect to the weak Whitney Wr topology. Then contains a subset consisting of maps of the form Fα(x)(x), where α: ℝn → ℝ runs over the space of all smooth germs at O. It was proved earlier by the author that if F is a linear vector field, then = . In this paper we present a class of examples of vector fields with degenerate singularities at O for which formally coincides with , i.e. on the level of ∞-jets at O. We also establish parameter rigidity of linear vector fields and “reduced” Hamiltonian vector fields of real homogeneous polynomials in two variables.},
author = {Sergiy Maksymenko},
journal = {Open Mathematics},
keywords = {Orbit preserving diffeomorphism; Parameter rigidity; Borel’s theorem; orbit preserving diffeomorphism; parameter rigidity; shift function},
language = {eng},
number = {2},
pages = {272-298},
title = {∞-jets of diffeomorphisms preserving orbits of vector fields},
url = {http://eudml.org/doc/269090},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Sergiy Maksymenko
TI - ∞-jets of diffeomorphisms preserving orbits of vector fields
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 272
EP - 298
AB - Let F be a C ∞ vector field defined near the origin O ∈ ℝn, F(O) = 0, and (Ft) be its local flow. Denote by the set of germs of orbit preserving diffeomorphisms h: ℝn → ℝn at O, and let , (r ≥ 0), be the identity component of with respect to the weak Whitney Wr topology. Then contains a subset consisting of maps of the form Fα(x)(x), where α: ℝn → ℝ runs over the space of all smooth germs at O. It was proved earlier by the author that if F is a linear vector field, then = . In this paper we present a class of examples of vector fields with degenerate singularities at O for which formally coincides with , i.e. on the level of ∞-jets at O. We also establish parameter rigidity of linear vector fields and “reduced” Hamiltonian vector fields of real homogeneous polynomials in two variables.
LA - eng
KW - Orbit preserving diffeomorphism; Parameter rigidity; Borel’s theorem; orbit preserving diffeomorphism; parameter rigidity; shift function
UR - http://eudml.org/doc/269090
ER -

References

top
  1. [1] Abe K., Fukui K., On the structure of the groups of equivariant diffeomorphisms of G-manifolds with codimension one orbit, Topology, 2001, 40, 1325–1337 http://dx.doi.org/10.1016/S0040-9383(00)00014-8[Crossref] Zbl1001.58003
  2. [2] Abe K., Fukui K., On the first homology of automorphism groups of manifolds with geometric structures, Cent. Eur. J. Math., 2005, 3, 516–528 http://dx.doi.org/10.2478/BF02475921[Crossref] Zbl1117.57032
  3. [3] Banyaga A., On the structure of the group of equivariant diffeomorphisms, Topology, 1977, 16, 279–283 http://dx.doi.org/10.1016/0040-9383(77)90009-X[Crossref] 
  4. [4] Camacho C., Neto A.L., Orbit preserving diffeomorphisms and the stability of Lie group actions and singular foliations, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), 82–103, Lecture Notes in Math., 597, Springer, Berlin, 1977 
  5. [5] Chacon R.V., Change of velocity in flows, J. Math. Mech., 1966, 16, 417–431 Zbl0158.30301
  6. [6] Damjanović D., Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 2007, 1, 665–688 [WoS][Crossref] Zbl1139.37017
  7. [7] Einsiedler M., Fisher T., Differentiable rigidity for hyperbolic toral actions, Israel J. Math., 2007, 157, 347–377 http://dx.doi.org/10.1007/s11856-006-0016-0[Crossref] Zbl1112.37022
  8. [8] Golubitsky M., Guillemin V., Stable mappings and their singularities, Graduate Texts in Mathematics, 14, Springer-Verlag, 1973 Zbl0294.58004
  9. [9] Gutiérrez C., De Melo W., The connected components of Morse-Smale vector fields on two manifolds, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), 230–251, Lecture Notes in Math., 597, Springer, Berlin, 1977 
  10. [10] Hart D., On the smoothness of generators, Topology, 1983, 22, 357–363 http://dx.doi.org/10.1016/0040-9383(83)90021-6[Crossref] 
  11. [11] Hirsch M., Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976 Zbl0356.57001
  12. [12] Hopf E., Ergodentheorie, Berlin, 1937 (in German) 
  13. [13] Hurder S., A survey of rigidity theory for Anosov actions, In: Differential topology, foliations, and group actions, Rio de Janeiro, 1992, Contemp. Math., 161, Amer. Math. Soc., Providence, 1994 
  14. [14] Kanai M., A new approach to the rigidity of discrete group actions, Geom. Funct. Anal., 1996, 6, 943–1056 http://dx.doi.org/10.1007/BF02246995[Crossref] Zbl0874.58006
  15. [15] Katok A., Spatzier R.J., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math., 1994, 79, 131–156 http://dx.doi.org/10.1007/BF02698888[Crossref] Zbl0819.58027
  16. [16] Katok A., Spatzier R.J., Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 1997, 216, 287–314 Zbl0938.37010
  17. [17] Kochergin A.V., Change of time in flows and mixing, Izv. Akad. Nauk SSSR Ser. Mat., 1973, 37, 1275–1298 (in Russian) Zbl0286.28013
  18. [18] Kowada M., The orbit-preserving transformation groups associated with a measurable flow, J. Math. Soc. Japan, 1972, 24, 355–373 http://dx.doi.org/10.2969/jmsj/02430355[Crossref] 
  19. [19] Maksymenko S., Smooth shifts along trajectories of flows, Topology Appl., 2003, 130, 183–204 http://dx.doi.org/10.1016/S0166-8641(02)00363-2[WoS][Crossref] Zbl1014.37012
  20. [20] Maksymenko S., Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom., 2006, 29, 241–285 http://dx.doi.org/10.1007/s10455-005-9012-6[Crossref] Zbl1099.37013
  21. [21] Maksymenko S., Stabilizers and orbits of smooth functions, Bull. Sci. Math., 2006, 130, 279–311 http://dx.doi.org/10.1016/j.bulsci.2005.11.001[Crossref] Zbl1109.37023
  22. [22] Maksymenko S., Hamiltonian vector fields of homogeneous polynomials on the plane, Topological problems and relative questions, Proceedings of Institute of Mathematics of Ukrainian NAS, 2006, 3, 269–308 (in Ukrainian) 
  23. [23] Mather J., Differentiable invariants, Topology, 1977, 16, 145–155 http://dx.doi.org/10.1016/0040-9383(77)90012-X[Crossref] 
  24. [24] Matsumoto Sh., Mitsumatsu Y., Leafwise cohomology and rigidity of certain Lie group actions, Ergodic Theory Dynam. Systems, 2003, 23, 1839–1866 http://dx.doi.org/10.1017/S0143385703000038[Crossref] Zbl1052.22020
  25. [25] Ornstein D.S., Smorodinsky M., Continuous speed changes for flows, Israel J. Math., 1978, 31, 161–168 http://dx.doi.org/10.1007/BF02760547[Crossref] Zbl0399.58003
  26. [26] Palis J., de Melo W., Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982 Zbl0491.58001
  27. [27] Parry W., Cocycles and velocity changes, J. London Math. Soc., 1972, 5, 511–516 http://dx.doi.org/10.1112/jlms/s2-5.3.511[Crossref] 
  28. [28] Rybicki T., Isomorphisms between leaf preserving diffeomorphism groups, Soochow J. Math., 1996, 22, 525–542 Zbl0869.58004
  29. [29] Rybicki T., Homology of the group of leaf preserving homeomorphisms, Demonstratio Math., 1996, 29, 459–464 Zbl0901.57030
  30. [30] Rybicki T., On commutators of equivariant homeomorphisms, Topology Appl., 2007, 154, 1561–1564 http://dx.doi.org/10.1016/j.topol.2006.12.003[Crossref][WoS] 
  31. [31] Schwarz G.W., Smooth functions invariant under the action of a compact Lie group, Topology, 1975, 14, 63–68 http://dx.doi.org/10.1016/0040-9383(75)90036-1[Crossref] 
  32. [32] Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., 1980, 51, 37–135 http://dx.doi.org/10.1007/BF02684776[Crossref] Zbl0449.57009
  33. [33] dos Santos N.M., Parameter rigid actions of the Heisenberg groups, Ergodic Theory Dynam. Systems, 2007, 27, 1719–1735 http://dx.doi.org/10.1017/S014338570600109X[Crossref] Zbl1127.37026
  34. [34] Siegel C.L., Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1952, 21–30 Zbl0047.32901
  35. [35] Sternberg S., Local contractions and a theorem of Poincaré, Amer. J. Math., 1957, 79, 809–824 http://dx.doi.org/10.2307/2372437[Crossref] 
  36. [36] Totoki H., Time changes of flows, Mem. Fac. Sci. Kyushu Univ. Ser. A, 1966, 20, 27–55 Zbl0185.39103
  37. [37] Venti R., Linear normal forms of differential equations, J. Differential Equations, 1966, 2, 182–194 http://dx.doi.org/10.1016/0022-0396(66)90042-8[Crossref] Zbl0135.30902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.