Algorithms for permutability in finite groups

Adolfo Ballester-Bolinches; Enric Cosme-Llópez; Ramón Esteban-Romero

Open Mathematics (2013)

  • Volume: 11, Issue: 11, page 1914-1922
  • ISSN: 2391-5455

Abstract

top
In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

How to cite

top

Adolfo Ballester-Bolinches, Enric Cosme-Llópez, and Ramón Esteban-Romero. "Algorithms for permutability in finite groups." Open Mathematics 11.11 (2013): 1914-1922. <http://eudml.org/doc/269091>.

@article{AdolfoBallester2013,
abstract = {In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.},
author = {Adolfo Ballester-Bolinches, Enric Cosme-Llópez, Ramón Esteban-Romero},
journal = {Open Mathematics},
keywords = {Finite group; Permutable subgroup; S-permutable subgroup; Dedekind group; Iwasawa group; T-group; PT-group; PST-group; Algorithm; finite groups; permutability properties; algorithms; permutable subgroups; Sylow-permutable subgroups; finite T-groups; PT-groups; PST-groups},
language = {eng},
number = {11},
pages = {1914-1922},
title = {Algorithms for permutability in finite groups},
url = {http://eudml.org/doc/269091},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Adolfo Ballester-Bolinches
AU - Enric Cosme-Llópez
AU - Ramón Esteban-Romero
TI - Algorithms for permutability in finite groups
JO - Open Mathematics
PY - 2013
VL - 11
IS - 11
SP - 1914
EP - 1922
AB - In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.
LA - eng
KW - Finite group; Permutable subgroup; S-permutable subgroup; Dedekind group; Iwasawa group; T-group; PT-group; PST-group; Algorithm; finite groups; permutability properties; algorithms; permutable subgroups; Sylow-permutable subgroups; finite T-groups; PT-groups; PST-groups
UR - http://eudml.org/doc/269091
ER -

References

top
  1. [1] Ballester-Bolinches A., Beidleman J.C., Cossey J., Esteban-Romero R., Ragland M.F., Schmidt J., Permutable subnormal subgroups of finite groups, Arch. Math. (Basel), 2009, 92(6), 549–557 http://dx.doi.org/10.1007/s00013-009-2976-x Zbl1182.20024
  2. [2] Ballester-Bolinches A., Beidleman J.C., Heineken H., Groups in which Sylow subgroups and subnormal subgroups permute, Illinois J. Math., 2003, 47(1–2), 63–69 Zbl1033.20019
  3. [3] Ballester-Bolinches A., Beidleman J.C., Heineken H., A local approach to certain classes of finite groups, Comm. Algebra, 2003, 31(12), 5931–5942 http://dx.doi.org/10.1081/AGB-120024860 Zbl1041.20013
  4. [4] Ballester-Bolinches A., Cosme-Llópez E., Esteban-Romero R., Permut: A GAP4 package to deal with permutability, v. 0.03, available at http://personales.upv.es/_resteban/gap/permut-0.03/ 
  5. [5] Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups, J. Algebra, 2002, 251(2), 727–738 http://dx.doi.org/10.1006/jabr.2001.9138 Zbl0999.20012
  6. [6] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 http://dx.doi.org/10.1515/9783110220612 Zbl1206.20019
  7. [7] Ballester-Bolinches A., Esteban-Romero R., Ragland M., A note on finite PST-groups, J. Group Theory, 2007, 10(2), 205–210 http://dx.doi.org/10.1515/JGT.2007.016 Zbl1120.20023
  8. [8] Ballester-Bolinches A., Esteban-Romero R., Ragland M., Corrigendum: A note on finite PST-groups, J. Group Theory, 2009, 12(6), 961–963 http://dx.doi.org/10.1515/JGT.2009.026 Zbl1183.20018
  9. [9] Beidleman J.C., Brewster B., Robinson D.J.S., Criteria for permutability to be transitive in finite groups, J. Algebra, 1999, 222(2), 400–412 http://dx.doi.org/10.1006/jabr.1998.7964 
  10. [10] Beidleman J.C., Heineken H., Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups, J. Group Theory, 2003, 6(2), 139–158 http://dx.doi.org/10.1515/jgth.2003.010 Zbl1045.20012
  11. [11] Huppert B., Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer, Berlin-Heidelberg-New York, 1967 http://dx.doi.org/10.1007/978-3-642-64981-3 
  12. [12] Maier R., Schmid P., The embedding of quasinormal subgroups in finite groups, Math. Z., 1973, 131(3), 269–272 http://dx.doi.org/10.1007/BF01187244 Zbl0259.20017
  13. [13] Robinson D.J.S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 1968, 19(4), 933–937 http://dx.doi.org/10.1090/S0002-9939-1968-0230808-9 Zbl0159.31002
  14. [14] Schmid P., Subgroups permutable with all Sylow subgroups, J. Algebra, 1998, 207(1), 285–293 http://dx.doi.org/10.1006/jabr.1998.7429 
  15. [15] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 http://dx.doi.org/10.1515/9783110868647 
  16. [16] The GAP Group, GAP - Groups, Algorithms, Programming, v. 4.5.7, 2012 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.