Positive and maximal positive solutions of singular mixed boundary value problem

Ravi Agarwal; Donal O’Regan; Svatoslav Staněk

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 694-716
  • ISSN: 2391-5455

Abstract

top
The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.

How to cite

top

Ravi Agarwal, Donal O’Regan, and Svatoslav Staněk. "Positive and maximal positive solutions of singular mixed boundary value problem." Open Mathematics 7.4 (2009): 694-716. <http://eudml.org/doc/269095>.

@article{RaviAgarwal2009,
abstract = {The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.},
author = {Ravi Agarwal, Donal O’Regan, Svatoslav Staněk},
journal = {Open Mathematics},
keywords = {Singular mixed problem; Positive solution; Maximal positive solution; Time singularity; Space singularity; Lower and upper functions; singular mixed problem; positive solution; maximal positive solution; time singularity; space singularity; lower and upper functions},
language = {eng},
number = {4},
pages = {694-716},
title = {Positive and maximal positive solutions of singular mixed boundary value problem},
url = {http://eudml.org/doc/269095},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Ravi Agarwal
AU - Donal O’Regan
AU - Svatoslav Staněk
TI - Positive and maximal positive solutions of singular mixed boundary value problem
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 694
EP - 716
AB - The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.
LA - eng
KW - Singular mixed problem; Positive solution; Maximal positive solution; Time singularity; Space singularity; Lower and upper functions; singular mixed problem; positive solution; maximal positive solution; time singularity; space singularity; lower and upper functions
UR - http://eudml.org/doc/269095
ER -

References

top
  1. [1] Agarwal R.P., O’Regan D., Singular differential and integral equations with applications, Kluwer, Dordrecht, 2003 
  2. [2] Agarwal R.P., O’Regan D., Singular problems motivated from classical upper and lower solutions, Acta Math. Hungar., 2003, 100, 245–256 http://dx.doi.org/10.1023/A:1025045626822[Crossref] 
  3. [3] Agarwal R.P., O’Regan D., Staněek S., Existence of positive solutions for boundary-value problems with singularities in phase variables, Proc. Edinburgh Math. Soc., 2004, 47, 1–13 http://dx.doi.org/10.1017/S0013091503000105[Crossref] 
  4. [4] Agarwal R.P., Staněek S., Nonnegative solutions of singular boundary value problems with sign changing nonlinearities, Comput. Math. Appl., 2003, 46, 1827–1837 http://dx.doi.org/10.1016/S0898-1221(03)90239-2[Crossref] Zbl1156.34310
  5. [5] Bartle R.G., A modern theory of integrations, AMS Providence, Rhode Island, 2001 Zbl0968.26001
  6. [6] Berestycki H., Lions P.L., Peletier L.A., An ODE approach to the existence of positive solutions for semilinear problems in ℝN, Indiana Univ. Math. J., 1981, 30, 141–157 http://dx.doi.org/10.1512/iumj.1981.30.30012[Crossref] 
  7. [7] Bertsch M., Passo R.D., Ughi M., Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 1990, 320, 779–798 http://dx.doi.org/10.2307/2001703[Crossref] Zbl0714.35039
  8. [8] Bertsch M., Ughi M., Positive properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal., 1990, 14, 571–592 http://dx.doi.org/10.1016/0362-546X(90)90063-M[Crossref] 
  9. [9] Cabada A., Cid J.A., Extremal solutions of ϕ-Laplacian-diffusion scalar problems with nonlinear functional boundary conditions in a unified way, Nonlinear. Anal., 2005, 63, 2515–2524 http://dx.doi.org/10.1016/j.na.2004.09.031[Crossref] 
  10. [10] Cabada A., Nieto J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 1990, 40, 135–145 http://dx.doi.org/10.1016/0096-3003(90)90128-P[Crossref] 
  11. [11] Cabada A., Pouso R.P., Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42, 1377–1396 http://dx.doi.org/10.1016/S0362-546X(99)00158-3[Crossref] Zbl0964.34016
  12. [12] Carl S., Heikkilä S., Nonlinear differential equations in ordered spaces, Chapman & Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics III, 2000 
  13. [13] Castro A., Sudhasree G., Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Anal., 1994, 22, 425–429 http://dx.doi.org/10.1016/0362-546X(94)90166-X[Crossref] Zbl0804.35038
  14. [14] Cherpion M., De Coster C., Habets P., Monotone iterative method for boundary value problem, Differential integral equations, 1999, 12, 309–338 Zbl1015.34009
  15. [15] Cid J.A., On extremal fixed point in Schauder’s theorem with application to differential equations, Bull. Belg. Math. Soc. Simon Stevin, 2004, 11, 15–20 Zbl1076.47044
  16. [16] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in ℝN, Adv. Math., Suppl. Stud. 7A, 1981, 369–402 
  17. [17] Kelevedjiev P., Nonnegative solutions to some singular second-order boundary value problems, Nonlinear Anal., 1999, 36, 481–494 http://dx.doi.org/10.1016/S0362-546X(98)00025-X[Crossref] Zbl0929.34022
  18. [18] Kiguradze I., Some optimal conditions for solvability of two-point singular boundary value problems, Funct. Differ. Equ., 2003, 10, 259–281 Zbl1062.34017
  19. [19] Kiguradze I.T., Shekhter B.L., Singular boundary value problems for second order ordinary differential equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1987, 30, 105–201 (in Russian), English translation: Journal of Soviet Mathematics, 1988, 43, 2340–2417 Zbl0782.34026
  20. [20] Lang S., Real and functional analysis, Springer, New York, 1993 Zbl0831.46001
  21. [21] O’Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J. Differential Equations, 1990, 84, 228–251 http://dx.doi.org/10.1016/0022-0396(90)90077-3[Crossref] 
  22. [22] Rachůnková I., Singular mixed boundary value problem, J. Math. Anal. Appl., 2006, 320, 611–618 http://dx.doi.org/10.1016/j.jmaa.2005.07.037[Crossref] 
  23. [23] Rachůnková I., Staněk S., Connections between types of singularities in differential equations and smoothness of solutions for Dirichlet BVPs, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 2003, 10, 209–222 Zbl1043.34022
  24. [24] Rachůnková I., Staněk S., Tvrdý M., Singularities and laplacians in boundary value problems for nonlinear differential equations, In: Cañada A., Drábek P., Fonda A. (Eds.), Handbook of differential equations, Ordinary differential equations, Vol. 3, 607–723, Elsevier, 2006 
  25. [25] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math., 1996, 172, 255–277 Zbl0855.34024
  26. [26] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions II, Pacific J. Math., 1996, 172, 259–297 Zbl0862.34015
  27. [27] Wang J., Gao W., A note on singular nonlinear two-point boundary value problems, Nonlinear Anal., 2000, 39, 281–287 http://dx.doi.org/10.1016/S0362-546X(98)00165-5[Crossref] Zbl0942.34018
  28. [28] Zheng L., Su X., Zhang X., Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium, Int. J. Pure Appl. Math., 2005, 19, 541–552 Zbl1080.34008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.