Positive and maximal positive solutions of singular mixed boundary value problem
Ravi Agarwal; Donal O’Regan; Svatoslav Staněk
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 694-716
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRavi Agarwal, Donal O’Regan, and Svatoslav Staněk. "Positive and maximal positive solutions of singular mixed boundary value problem." Open Mathematics 7.4 (2009): 694-716. <http://eudml.org/doc/269095>.
@article{RaviAgarwal2009,
abstract = {The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.},
author = {Ravi Agarwal, Donal O’Regan, Svatoslav Staněk},
journal = {Open Mathematics},
keywords = {Singular mixed problem; Positive solution; Maximal positive solution; Time singularity; Space singularity; Lower and upper functions; singular mixed problem; positive solution; maximal positive solution; time singularity; space singularity; lower and upper functions},
language = {eng},
number = {4},
pages = {694-716},
title = {Positive and maximal positive solutions of singular mixed boundary value problem},
url = {http://eudml.org/doc/269095},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Ravi Agarwal
AU - Donal O’Regan
AU - Svatoslav Staněk
TI - Positive and maximal positive solutions of singular mixed boundary value problem
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 694
EP - 716
AB - The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.
LA - eng
KW - Singular mixed problem; Positive solution; Maximal positive solution; Time singularity; Space singularity; Lower and upper functions; singular mixed problem; positive solution; maximal positive solution; time singularity; space singularity; lower and upper functions
UR - http://eudml.org/doc/269095
ER -
References
top- [1] Agarwal R.P., O’Regan D., Singular differential and integral equations with applications, Kluwer, Dordrecht, 2003
- [2] Agarwal R.P., O’Regan D., Singular problems motivated from classical upper and lower solutions, Acta Math. Hungar., 2003, 100, 245–256 http://dx.doi.org/10.1023/A:1025045626822[Crossref]
- [3] Agarwal R.P., O’Regan D., Staněek S., Existence of positive solutions for boundary-value problems with singularities in phase variables, Proc. Edinburgh Math. Soc., 2004, 47, 1–13 http://dx.doi.org/10.1017/S0013091503000105[Crossref]
- [4] Agarwal R.P., Staněek S., Nonnegative solutions of singular boundary value problems with sign changing nonlinearities, Comput. Math. Appl., 2003, 46, 1827–1837 http://dx.doi.org/10.1016/S0898-1221(03)90239-2[Crossref] Zbl1156.34310
- [5] Bartle R.G., A modern theory of integrations, AMS Providence, Rhode Island, 2001 Zbl0968.26001
- [6] Berestycki H., Lions P.L., Peletier L.A., An ODE approach to the existence of positive solutions for semilinear problems in ℝN, Indiana Univ. Math. J., 1981, 30, 141–157 http://dx.doi.org/10.1512/iumj.1981.30.30012[Crossref]
- [7] Bertsch M., Passo R.D., Ughi M., Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 1990, 320, 779–798 http://dx.doi.org/10.2307/2001703[Crossref] Zbl0714.35039
- [8] Bertsch M., Ughi M., Positive properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal., 1990, 14, 571–592 http://dx.doi.org/10.1016/0362-546X(90)90063-M[Crossref]
- [9] Cabada A., Cid J.A., Extremal solutions of ϕ-Laplacian-diffusion scalar problems with nonlinear functional boundary conditions in a unified way, Nonlinear. Anal., 2005, 63, 2515–2524 http://dx.doi.org/10.1016/j.na.2004.09.031[Crossref]
- [10] Cabada A., Nieto J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 1990, 40, 135–145 http://dx.doi.org/10.1016/0096-3003(90)90128-P[Crossref]
- [11] Cabada A., Pouso R.P., Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42, 1377–1396 http://dx.doi.org/10.1016/S0362-546X(99)00158-3[Crossref] Zbl0964.34016
- [12] Carl S., Heikkilä S., Nonlinear differential equations in ordered spaces, Chapman & Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics III, 2000
- [13] Castro A., Sudhasree G., Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Anal., 1994, 22, 425–429 http://dx.doi.org/10.1016/0362-546X(94)90166-X[Crossref] Zbl0804.35038
- [14] Cherpion M., De Coster C., Habets P., Monotone iterative method for boundary value problem, Differential integral equations, 1999, 12, 309–338 Zbl1015.34009
- [15] Cid J.A., On extremal fixed point in Schauder’s theorem with application to differential equations, Bull. Belg. Math. Soc. Simon Stevin, 2004, 11, 15–20 Zbl1076.47044
- [16] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in ℝN, Adv. Math., Suppl. Stud. 7A, 1981, 369–402
- [17] Kelevedjiev P., Nonnegative solutions to some singular second-order boundary value problems, Nonlinear Anal., 1999, 36, 481–494 http://dx.doi.org/10.1016/S0362-546X(98)00025-X[Crossref] Zbl0929.34022
- [18] Kiguradze I., Some optimal conditions for solvability of two-point singular boundary value problems, Funct. Differ. Equ., 2003, 10, 259–281 Zbl1062.34017
- [19] Kiguradze I.T., Shekhter B.L., Singular boundary value problems for second order ordinary differential equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1987, 30, 105–201 (in Russian), English translation: Journal of Soviet Mathematics, 1988, 43, 2340–2417 Zbl0782.34026
- [20] Lang S., Real and functional analysis, Springer, New York, 1993 Zbl0831.46001
- [21] O’Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J. Differential Equations, 1990, 84, 228–251 http://dx.doi.org/10.1016/0022-0396(90)90077-3[Crossref]
- [22] Rachůnková I., Singular mixed boundary value problem, J. Math. Anal. Appl., 2006, 320, 611–618 http://dx.doi.org/10.1016/j.jmaa.2005.07.037[Crossref]
- [23] Rachůnková I., Staněk S., Connections between types of singularities in differential equations and smoothness of solutions for Dirichlet BVPs, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 2003, 10, 209–222 Zbl1043.34022
- [24] Rachůnková I., Staněk S., Tvrdý M., Singularities and laplacians in boundary value problems for nonlinear differential equations, In: Cañada A., Drábek P., Fonda A. (Eds.), Handbook of differential equations, Ordinary differential equations, Vol. 3, 607–723, Elsevier, 2006
- [25] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math., 1996, 172, 255–277 Zbl0855.34024
- [26] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions II, Pacific J. Math., 1996, 172, 259–297 Zbl0862.34015
- [27] Wang J., Gao W., A note on singular nonlinear two-point boundary value problems, Nonlinear Anal., 2000, 39, 281–287 http://dx.doi.org/10.1016/S0362-546X(98)00165-5[Crossref] Zbl0942.34018
- [28] Zheng L., Su X., Zhang X., Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium, Int. J. Pure Appl. Math., 2005, 19, 541–552 Zbl1080.34008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.