On some congruences of power algebras
Agata Pilitowska; Anna Zamojska-Dzienio
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 987-1003
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAgata Pilitowska, and Anna Zamojska-Dzienio. "On some congruences of power algebras." Open Mathematics 10.3 (2012): 987-1003. <http://eudml.org/doc/269105>.
@article{AgataPilitowska2012,
abstract = {In a natural way we can “lift” any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra (A, Ω) its power algebra of subsets. In this paper we investigate extended power algebras (power algebras of non-empty subsets with one additional semilattice operation) of modes (entropic and idempotent algebras). We describe some congruence relations on these algebras such that their quotients are idempotent. Such congruences determine some class of non-trivial subvarieties of the variety of all semilattice ordered modes (modals).},
author = {Agata Pilitowska, Anna Zamojska-Dzienio},
journal = {Open Mathematics},
keywords = {Idempotent; Entropic; Modes; Power algebras; Congruence relations; Identities; Finitary algebras; idempotent algebra; entropic algebra; mode; modal; power algebra; congruence relation; identity; finitary algebra; idempotent quotient},
language = {eng},
number = {3},
pages = {987-1003},
title = {On some congruences of power algebras},
url = {http://eudml.org/doc/269105},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Agata Pilitowska
AU - Anna Zamojska-Dzienio
TI - On some congruences of power algebras
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 987
EP - 1003
AB - In a natural way we can “lift” any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra (A, Ω) its power algebra of subsets. In this paper we investigate extended power algebras (power algebras of non-empty subsets with one additional semilattice operation) of modes (entropic and idempotent algebras). We describe some congruence relations on these algebras such that their quotients are idempotent. Such congruences determine some class of non-trivial subvarieties of the variety of all semilattice ordered modes (modals).
LA - eng
KW - Idempotent; Entropic; Modes; Power algebras; Congruence relations; Identities; Finitary algebras; idempotent algebra; entropic algebra; mode; modal; power algebra; congruence relation; identity; finitary algebra; idempotent quotient
UR - http://eudml.org/doc/269105
ER -
References
top- [1] Adaricheva K., Pilitowska A., Stanovský D., On complex algebras of subalgebras, Algebra Logika, 2008, 47(6), 655–686 (in Russian) http://dx.doi.org/10.1007/s10469-008-9036-7 Zbl1241.08002
- [2] Bošnjak I., Madarász R., On power structures, Algebra Discrete Math., 2003, 2, 14–35 Zbl1063.08001
- [3] Brink C., Power structures, Algebra Universalis, 1993, 30(2), 177–216 http://dx.doi.org/10.1007/BF01196091
- [4] Ježek J., Markovic P., Maróti M., McKenzie R., The variety generated by tournaments, Acta Univ. Carolin. Math. Phys., 1999, 40(1), 21–41 Zbl0939.08003
- [5] Ježek J., McKenzie R., The variety generated by equivalence algebras, Algebra Universalis, 2001, 45(2–3), 211–219 http://dx.doi.org/10.1007/s000120050213 Zbl0980.08004
- [6] Jónsson B., Tarski A., Boolean algebras with operators. I, Amer. J. Math., 1951, 73, 891–939 http://dx.doi.org/10.2307/2372123 Zbl0045.31505
- [7] Jónsson B., Tarski A., Boolean algebras with operators. II, Amer. J. Math., 1952, 74, 127–162 http://dx.doi.org/10.2307/2372074 Zbl0045.31601
- [8] Kearnes K., Semilattice modes I: the associated semiring, Algebra Universalis, 1995, 34(2), 220–272 http://dx.doi.org/10.1007/BF01204784 Zbl0848.08005
- [9] McKenzie R.N., McNulty G., Taylor W., Algebras, Lattices, Varieties. I, Wadsworth Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, 1987 Zbl0611.08001
- [10] McKenzie R., Romanowska A., Varieties of ·-distributive bisemilattices, Contributions to General Algebra, Klagenfurt, May 25–28, 1978, Heyn, Klagenfurt, 1979, 213–218
- [11] Pilitowska A., Modes of Submodes, PhD thesis, Warsaw University of Technology, 1996
- [12] Pilitowska A., Zamojska-Dzienio A., Representation of modals, Demonstratio Math., 2011, 44(3), 535–556 Zbl1239.08003
- [13] Pilitowska A., Zamojska-Dzienio A., Varieties generated by modes of submodes, preprint available at http://www.mini.pw.edu.pl/~apili/publikacje.html Zbl1270.08004
- [14] Romanowska A., Semi-affine modes and modals, Sci. Math. Jpn., 2005, 61(1), 159–194 Zbl1067.08001
- [15] Romanowska A.B., Roszkowska B., On some groupoid modes, Demonstratio Math., 1987, 20(1–2), 277–290 Zbl0669.08005
- [16] Romanowska A.B., Smith J.D.H., Bisemilattices of subsemilattices, J. Algebra, 1981, 70(1), 78–88 http://dx.doi.org/10.1016/0021-8693(81)90244-1 Zbl0457.06002
- [17] Romanowska A.B., Smith J.D.H., Modal Theory, Res. Exp. Math., 9, Heldermann, Berlin, 1985
- [18] Romanowska A.B., Smith J.D.H., Subalgebra systems of idempotent entropic algebras, J. Algebra, 1989, 120(2), 247–262 http://dx.doi.org/10.1016/0021-8693(89)90197-X
- [19] Romanowska A.B., Smith J.D.H., On the structure of subalgebra systems of idempotent entropic algebras, J. Algebra, 1989, 120(2), 263–283 http://dx.doi.org/10.1016/0021-8693(89)90198-1
- [20] Romanowska A.B., Smith J.D.H., Modes, World Scientific, River Edge, 2002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.