# Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3

Ugo Bruzzo; Dimitri Markushevich; Alexander Tikhomirov

Open Mathematics (2012)

- Volume: 10, Issue: 4, page 1232-1245
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topUgo Bruzzo, Dimitri Markushevich, and Alexander Tikhomirov. "Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3." Open Mathematics 10.4 (2012): 1232-1245. <http://eudml.org/doc/269108>.

@article{UgoBruzzo2012,

abstract = {Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1) −r(2r + 1).},

author = {Ugo Bruzzo, Dimitri Markushevich, Alexander Tikhomirov},

journal = {Open Mathematics},

keywords = {Vector bundles; Symplectic bundles; Instantons; Moduli space; vector bundles; symplectic bundles; instantons; moduli space},

language = {eng},

number = {4},

pages = {1232-1245},

title = {Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3},

url = {http://eudml.org/doc/269108},

volume = {10},

year = {2012},

}

TY - JOUR

AU - Ugo Bruzzo

AU - Dimitri Markushevich

AU - Alexander Tikhomirov

TI - Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3

JO - Open Mathematics

PY - 2012

VL - 10

IS - 4

SP - 1232

EP - 1245

AB - Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1) −r(2r + 1).

LA - eng

KW - Vector bundles; Symplectic bundles; Instantons; Moduli space; vector bundles; symplectic bundles; instantons; moduli space

UR - http://eudml.org/doc/269108

ER -

## References

top- [1] Atiyah M.F., Geometry of Yang-Mills Fields, Accademia Nazionle dei Lincei, Scuola Normale Superiore, Pisa, 1979 Zbl0435.58001
- [2] Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Yu.I., Construction of instantons, Phys. Lett. A, 1978, 65(3), 185–187 http://dx.doi.org/10.1016/0375-9601(78)90141-X Zbl0424.14004
- [3] Atiyah M.F., Ward R.S., Instantons and algebraic geometry, Comm. Math. Phys., 1977, 55(2), 117–124 http://dx.doi.org/10.1007/BF01626514 Zbl0362.14004
- [4] Barth W., Lectures on mathematical instanton bundles, In: Gauge Theories: Fundamental Interactions and Rigorous Results, Poiana Brasov, August 25–September 7, 1981, Progr. Phys., 5, Birkhäuser, Boston, 1982, 177–206
- [5] Barth W., Hulek K., Monads and moduli of vector bundles, Manuscripta Math., 1978, 25(4), 323–347 http://dx.doi.org/10.1007/BF01168047 Zbl0395.14007
- [6] Beilinson A.A., Coherent sheaves on ℙn and problems of linear algebra, Funct. Anal. Appl., 1978, 12(3), 214–216 http://dx.doi.org/10.1007/BF01681436 Zbl0424.14003
- [7] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 684–713 Zbl0126.16801
- [8] Jardim M., Verbitsky M., Trihyperkähler reduction and instanton bundles on ℂℙ3, preprint available at http://arxiv.org/abs/1103.4431 Zbl06382611
- [9] McCarthy P.J., Rational parametrisation of normalised Stiefel manifolds, and explicit non-’t Hooft solutions of the Atiyah-Drinfeld-Hitchin-Manin instanton matrix equations for Sp(n), Lett. Math. Phys., 1981, 5(4), 255–261 http://dx.doi.org/10.1007/BF00401473 Zbl0489.58038
- [10] Tikhomirov A.S., Moduli of mathematical instanton vector bundles with odd c 2 on projective space, Izv. Ross. Akad. Nauk Ser. Mat., 2012, 76(5) (in press, in Russian)
- [11] Tjurin A.N., On the superposition of mathematical instantons. II, Progr. Math., 36, Birkhäuser, Boston, 1983
- [12] Tyurin A.N., The structure of the variety of pairs of commuting pencils of symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(2), 409–430 (in Russian)