Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3
Ugo Bruzzo; Dimitri Markushevich; Alexander Tikhomirov
Open Mathematics (2012)
- Volume: 10, Issue: 4, page 1232-1245
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topUgo Bruzzo, Dimitri Markushevich, and Alexander Tikhomirov. "Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3." Open Mathematics 10.4 (2012): 1232-1245. <http://eudml.org/doc/269108>.
@article{UgoBruzzo2012,
abstract = {Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1) −r(2r + 1).},
author = {Ugo Bruzzo, Dimitri Markushevich, Alexander Tikhomirov},
journal = {Open Mathematics},
keywords = {Vector bundles; Symplectic bundles; Instantons; Moduli space; vector bundles; symplectic bundles; instantons; moduli space},
language = {eng},
number = {4},
pages = {1232-1245},
title = {Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3},
url = {http://eudml.org/doc/269108},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Ugo Bruzzo
AU - Dimitri Markushevich
AU - Alexander Tikhomirov
TI - Moduli of symplectic instanton vector bundles of higher rank on projective space ℙ3
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1232
EP - 1245
AB - Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1) −r(2r + 1).
LA - eng
KW - Vector bundles; Symplectic bundles; Instantons; Moduli space; vector bundles; symplectic bundles; instantons; moduli space
UR - http://eudml.org/doc/269108
ER -
References
top- [1] Atiyah M.F., Geometry of Yang-Mills Fields, Accademia Nazionle dei Lincei, Scuola Normale Superiore, Pisa, 1979 Zbl0435.58001
- [2] Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Yu.I., Construction of instantons, Phys. Lett. A, 1978, 65(3), 185–187 http://dx.doi.org/10.1016/0375-9601(78)90141-X Zbl0424.14004
- [3] Atiyah M.F., Ward R.S., Instantons and algebraic geometry, Comm. Math. Phys., 1977, 55(2), 117–124 http://dx.doi.org/10.1007/BF01626514 Zbl0362.14004
- [4] Barth W., Lectures on mathematical instanton bundles, In: Gauge Theories: Fundamental Interactions and Rigorous Results, Poiana Brasov, August 25–September 7, 1981, Progr. Phys., 5, Birkhäuser, Boston, 1982, 177–206
- [5] Barth W., Hulek K., Monads and moduli of vector bundles, Manuscripta Math., 1978, 25(4), 323–347 http://dx.doi.org/10.1007/BF01168047 Zbl0395.14007
- [6] Beilinson A.A., Coherent sheaves on ℙn and problems of linear algebra, Funct. Anal. Appl., 1978, 12(3), 214–216 http://dx.doi.org/10.1007/BF01681436 Zbl0424.14003
- [7] Horrocks G., Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc., 1964, 14, 684–713 Zbl0126.16801
- [8] Jardim M., Verbitsky M., Trihyperkähler reduction and instanton bundles on ℂℙ3, preprint available at http://arxiv.org/abs/1103.4431 Zbl06382611
- [9] McCarthy P.J., Rational parametrisation of normalised Stiefel manifolds, and explicit non-’t Hooft solutions of the Atiyah-Drinfeld-Hitchin-Manin instanton matrix equations for Sp(n), Lett. Math. Phys., 1981, 5(4), 255–261 http://dx.doi.org/10.1007/BF00401473 Zbl0489.58038
- [10] Tikhomirov A.S., Moduli of mathematical instanton vector bundles with odd c 2 on projective space, Izv. Ross. Akad. Nauk Ser. Mat., 2012, 76(5) (in press, in Russian)
- [11] Tjurin A.N., On the superposition of mathematical instantons. II, Progr. Math., 36, Birkhäuser, Boston, 1983
- [12] Tyurin A.N., The structure of the variety of pairs of commuting pencils of symmetric matrices, Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(2), 409–430 (in Russian)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.