Topological K-equivalence of analytic function-germs

Sérgio Alvarez; Lev Birbrair; João Costa; Alexandre Fernandes

Open Mathematics (2010)

  • Volume: 8, Issue: 2, page 338-345
  • ISSN: 2391-5455

Abstract

top
We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.

How to cite

top

Sérgio Alvarez, et al. "Topological K-equivalence of analytic function-germs." Open Mathematics 8.2 (2010): 338-345. <http://eudml.org/doc/269126>.

@article{SérgioAlvarez2010,
abstract = {We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.},
author = {Sérgio Alvarez, Lev Birbrair, João Costa, Alexandre Fernandes},
journal = {Open Mathematics},
keywords = {Topological K-equivalence; Topological equivalence; Function-germs; topological -equivalence; topological equivalence; function-germs},
language = {eng},
number = {2},
pages = {338-345},
title = {Topological K-equivalence of analytic function-germs},
url = {http://eudml.org/doc/269126},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Sérgio Alvarez
AU - Lev Birbrair
AU - João Costa
AU - Alexandre Fernandes
TI - Topological K-equivalence of analytic function-germs
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 338
EP - 345
AB - We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.
LA - eng
KW - Topological K-equivalence; Topological equivalence; Function-germs; topological -equivalence; topological equivalence; function-germs
UR - http://eudml.org/doc/269126
ER -

References

top
  1. [1] Birbair L., Costa J., Fernandes A., Ruas M., K-bi-Lipschitz equivalence of real function-germs, Proc. Amer. Math. Soc, 2007, 135(4), 1089–1095 http://dx.doi.org/10.1090/S0002-9939-06-08566-2 Zbl1116.32020
  2. [2] Birbair L, Costa J., Fernandes A., Finiteness theorem for topological contact equivalence of map germs, Hokkaido Math. J., 2009, 38(3), 511–517 
  3. [3] Bierstone E., Milman P., Uniformization of analytic spaces, J. Amer. Math. Soc, 1989, 2(4), 801–836 http://dx.doi.org/10.2307/1990895 Zbl0685.32007
  4. [4] Benedetti R., Shiota M., Finiteness of semialgebraic types of polynomial functions, Math. Z., 1991, 208(4), 589–596 http://dx.doi.org/10.1007/BF02571547 Zbl0744.14034
  5. [5] Coste M., An introduction to 0-minimal geometry, PhD thesis, University of Pisa, Italy, 2000 (in Italian) 
  6. [6] Fukuda T., Types topolodiques des polynomes, Inst. Hautes Etudes Sci. Publ. Math., 1976(46), 87–106 Zbl0341.57019
  7. [7] Nishimura T., Topological K-equivalence of smooth map-germs, Stratifications, singularities and differential equations, I, (Marseille, 1990; Honolulu, HI, 1990), 82–93, Travaux en Cours, 54, Hermann, Paris, 1997 
  8. [8] Nishimura T, C 0-K-determined map-germs, Trans. Amer. Math. Soc, 1989, 132(2), 621–639 54, Hermann, Paris 1997. http://dx.doi.org/10.2307/2001003 
  9. [9] Prishlyak A., Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology and Applications, 2002, 119(3), 257–267 http://dx.doi.org/10.1016/S0166-8641(01)00077-3 Zbl1042.57021
  10. [10] van den Dries L, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 
  11. [11] Ruas M., Valette G., C o and bi-Lipschitz K-equivalence of mappings, preprint 
  12. [12] Wall C.T.C., Finite determinacy of smooth map-germs, Bull. London Math. Soc, 1981, 13, 481–539 http://dx.doi.org/10.1112/blms/13.6.481 Zbl0451.58009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.