Topological K-equivalence of analytic function-germs
Sérgio Alvarez; Lev Birbrair; João Costa; Alexandre Fernandes
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 338-345
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topSérgio Alvarez, et al. "Topological K-equivalence of analytic function-germs." Open Mathematics 8.2 (2010): 338-345. <http://eudml.org/doc/269126>.
@article{SérgioAlvarez2010,
abstract = {We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.},
author = {Sérgio Alvarez, Lev Birbrair, João Costa, Alexandre Fernandes},
journal = {Open Mathematics},
keywords = {Topological K-equivalence; Topological equivalence; Function-germs; topological -equivalence; topological equivalence; function-germs},
language = {eng},
number = {2},
pages = {338-345},
title = {Topological K-equivalence of analytic function-germs},
url = {http://eudml.org/doc/269126},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Sérgio Alvarez
AU - Lev Birbrair
AU - João Costa
AU - Alexandre Fernandes
TI - Topological K-equivalence of analytic function-germs
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 338
EP - 345
AB - We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.
LA - eng
KW - Topological K-equivalence; Topological equivalence; Function-germs; topological -equivalence; topological equivalence; function-germs
UR - http://eudml.org/doc/269126
ER -
References
top- [1] Birbair L., Costa J., Fernandes A., Ruas M., K-bi-Lipschitz equivalence of real function-germs, Proc. Amer. Math. Soc, 2007, 135(4), 1089–1095 http://dx.doi.org/10.1090/S0002-9939-06-08566-2 Zbl1116.32020
- [2] Birbair L, Costa J., Fernandes A., Finiteness theorem for topological contact equivalence of map germs, Hokkaido Math. J., 2009, 38(3), 511–517
- [3] Bierstone E., Milman P., Uniformization of analytic spaces, J. Amer. Math. Soc, 1989, 2(4), 801–836 http://dx.doi.org/10.2307/1990895 Zbl0685.32007
- [4] Benedetti R., Shiota M., Finiteness of semialgebraic types of polynomial functions, Math. Z., 1991, 208(4), 589–596 http://dx.doi.org/10.1007/BF02571547 Zbl0744.14034
- [5] Coste M., An introduction to 0-minimal geometry, PhD thesis, University of Pisa, Italy, 2000 (in Italian)
- [6] Fukuda T., Types topolodiques des polynomes, Inst. Hautes Etudes Sci. Publ. Math., 1976(46), 87–106 Zbl0341.57019
- [7] Nishimura T., Topological K-equivalence of smooth map-germs, Stratifications, singularities and differential equations, I, (Marseille, 1990; Honolulu, HI, 1990), 82–93, Travaux en Cours, 54, Hermann, Paris, 1997
- [8] Nishimura T, C 0-K-determined map-germs, Trans. Amer. Math. Soc, 1989, 132(2), 621–639 54, Hermann, Paris 1997. http://dx.doi.org/10.2307/2001003
- [9] Prishlyak A., Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology and Applications, 2002, 119(3), 257–267 http://dx.doi.org/10.1016/S0166-8641(01)00077-3 Zbl1042.57021
- [10] van den Dries L, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998
- [11] Ruas M., Valette G., C o and bi-Lipschitz K-equivalence of mappings, preprint
- [12] Wall C.T.C., Finite determinacy of smooth map-germs, Bull. London Math. Soc, 1981, 13, 481–539 http://dx.doi.org/10.1112/blms/13.6.481 Zbl0451.58009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.