Superposition operator on the space of sequences almost converging to zero

Egor Alekhno

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 619-645
  • ISSN: 2391-5455

Abstract

top
We study the superposition operator f on on the space ac 0 of sequences almost converging to zero. Conditions are derived for which f has a representation of the form f x = a+bx +g x, for all x ∈ ac 0 with a = f 0, b ∈ D(ac 0), g a superposition operator from ℓ∞ into I(ac 0), D(ac 0) = {z: zx ∈ ac 0 for all x ∈ ac 0}, and I(ac 0) the maximal ideal in ac 0. If f is generated by a function f of a real variable, then f is linear. We consider the conditions for which a bounded function f generates f acting on ac 0 and the conditions for which there exists a sequence y ∈ ac 0 such that y − f y ∈ ac 0. In terms of f, criteria for the boundedness, continuity, and sequential σ(ac 0ℓ1)-continuity of f on ac 0 are given. It is shown that the continuity of f is equivalent to the weak sequential continuity. Finally, properties of spaces D(ac 0) and I(ac 0) are studied, and in particular it is established that the inclusion I(ac 0) ⊕ {λe: λ ∈ ℝ} ⊂ D(ac 0) is proper, where e = (1, 1, …). By means of D(ac 0), a number of Banach-Mazur limit properties are derived.

How to cite

top

Egor Alekhno. "Superposition operator on the space of sequences almost converging to zero." Open Mathematics 10.2 (2012): 619-645. <http://eudml.org/doc/269129>.

@article{EgorAlekhno2012,
abstract = {We study the superposition operator f on on the space ac 0 of sequences almost converging to zero. Conditions are derived for which f has a representation of the form f x = a+bx +g x, for all x ∈ ac 0 with a = f 0, b ∈ D(ac 0), g a superposition operator from ℓ∞ into I(ac 0), D(ac 0) = \{z: zx ∈ ac 0 for all x ∈ ac 0\}, and I(ac 0) the maximal ideal in ac 0. If f is generated by a function f of a real variable, then f is linear. We consider the conditions for which a bounded function f generates f acting on ac 0 and the conditions for which there exists a sequence y ∈ ac 0 such that y − f y ∈ ac 0. In terms of f, criteria for the boundedness, continuity, and sequential σ(ac 0ℓ1)-continuity of f on ac 0 are given. It is shown that the continuity of f is equivalent to the weak sequential continuity. Finally, properties of spaces D(ac 0) and I(ac 0) are studied, and in particular it is established that the inclusion I(ac 0) ⊕ \{λe: λ ∈ ℝ\} ⊂ D(ac 0) is proper, where e = (1, 1, …). By means of D(ac 0), a number of Banach-Mazur limit properties are derived.},
author = {Egor Alekhno},
journal = {Open Mathematics},
keywords = {Superposition operator; Sequence space; Almost convergence; Banach-Mazur limit; superposition operator; almost convergence},
language = {eng},
number = {2},
pages = {619-645},
title = {Superposition operator on the space of sequences almost converging to zero},
url = {http://eudml.org/doc/269129},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Egor Alekhno
TI - Superposition operator on the space of sequences almost converging to zero
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 619
EP - 645
AB - We study the superposition operator f on on the space ac 0 of sequences almost converging to zero. Conditions are derived for which f has a representation of the form f x = a+bx +g x, for all x ∈ ac 0 with a = f 0, b ∈ D(ac 0), g a superposition operator from ℓ∞ into I(ac 0), D(ac 0) = {z: zx ∈ ac 0 for all x ∈ ac 0}, and I(ac 0) the maximal ideal in ac 0. If f is generated by a function f of a real variable, then f is linear. We consider the conditions for which a bounded function f generates f acting on ac 0 and the conditions for which there exists a sequence y ∈ ac 0 such that y − f y ∈ ac 0. In terms of f, criteria for the boundedness, continuity, and sequential σ(ac 0ℓ1)-continuity of f on ac 0 are given. It is shown that the continuity of f is equivalent to the weak sequential continuity. Finally, properties of spaces D(ac 0) and I(ac 0) are studied, and in particular it is established that the inclusion I(ac 0) ⊕ {λe: λ ∈ ℝ} ⊂ D(ac 0) is proper, where e = (1, 1, …). By means of D(ac 0), a number of Banach-Mazur limit properties are derived.
LA - eng
KW - Superposition operator; Sequence space; Almost convergence; Banach-Mazur limit; superposition operator; almost convergence
UR - http://eudml.org/doc/269129
ER -

References

top
  1. [1] Alekhno E., On weak continuity of a superposition operator on the space of all bounded sequences, Methods Funct. Anal. Topology, 2005, 11(3), 207–216 Zbl1100.47051
  2. [2] Alekhno E.A., Some special properties of Mazur's functionals. II, In: Proceedings of AMADE-2006, 2, Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, 2006, 17–23 (in Russian) 
  3. [3] Alekhno E.A., Weak continuity of a superposition operator in sequence spaces, Vladikavkaz. Mat. Zh., 2009, 11(2), 6–18 (in Russian) Zbl1324.46064
  4. [4] Alekhno E.A., Zabreĭko P.P., On the weak continuity of the superposition operator in the space L ∞, Vestsī Nats. Akad. Navuk Belarusī Ser. Fīz.-Mat. Navuk, 2005, 2, 17–23 (in Russian) 
  5. [5] Aliprantis C.D., Burkinshaw O., Positive Operators, Pure Appl. Math., 119, Academic Press, Orlando, 1985 
  6. [6] Appell J., Zabrejko P.P., Nonlinear Superposition Operators, Cambridge Tracts in Math., 95, Cambridge University Press, Cambridge, 1990 Zbl0701.47041
  7. [7] Bennett G., Kalton N.J., Consistency theorems for almost convergence, Trans. Amer. Math. Soc., 1974, 198, 23–43 http://dx.doi.org/10.1090/S0002-9947-1974-0352932-X Zbl0301.46005
  8. [8] Dunford N., Schwartz J.T., Linear Operators I. General Theory, Pure Appl. Math., 7, Interscience, New York, 1958 Zbl0084.10402
  9. [9] Gillman L., Jerison M., Rings of Continuous Functions, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1960 Zbl0093.30001
  10. [10] Jerison M., The set of all generalized limits of bounded sequences, Canad. J. Math., 1957, 9(1), 79–89 http://dx.doi.org/10.4153/CJM-1957-012-x Zbl0077.31004
  11. [11] Luxemburg W.A.J., Nonstandard hulls, generalized limits and almost convergence, In: Analysis and Geometry, Bibliographisches Inst., Mannheim, 1992, 19–45 Zbl0765.26012
  12. [12] Sucheston L., Banach limits, Amer. Math. Monthly, 1967, 74(3), 308–311 http://dx.doi.org/10.2307/2316038 Zbl0148.12202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.