Upper bounds for the moments of derivatives of Dirichlet L-functions

Keiju Sono

Open Mathematics (2014)

  • Volume: 12, Issue: 6, page 848-860
  • ISSN: 2391-5455

Abstract

top
In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.

How to cite

top

Keiju Sono. "Upper bounds for the moments of derivatives of Dirichlet L-functions." Open Mathematics 12.6 (2014): 848-860. <http://eudml.org/doc/269139>.

@article{KeijuSono2014,
abstract = {In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.},
author = {Keiju Sono},
journal = {Open Mathematics},
keywords = {Dirichlet L-function; Central value; Moment; Generalized Riemann hypothesis; Dirichlet -function; central value; moment; generalized Riemann hypothesis},
language = {eng},
number = {6},
pages = {848-860},
title = {Upper bounds for the moments of derivatives of Dirichlet L-functions},
url = {http://eudml.org/doc/269139},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Keiju Sono
TI - Upper bounds for the moments of derivatives of Dirichlet L-functions
JO - Open Mathematics
PY - 2014
VL - 12
IS - 6
SP - 848
EP - 860
AB - In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.
LA - eng
KW - Dirichlet L-function; Central value; Moment; Generalized Riemann hypothesis; Dirichlet -function; central value; moment; generalized Riemann hypothesis
UR - http://eudml.org/doc/269139
ER -

References

top
  1. [1] Bui H.M., Milinovich M.B., Central values of derivatives of Dirichlet L-functions, Int. J. Number Theory, 2011, 7(2), 371–388 http://dx.doi.org/10.1142/S1793042111004125 Zbl1234.11108
  2. [2] Chandee V., Explicit upper bounds for L-functions on the critical line, Proc. Amer. Math. Soc., 2009, 137(12), 4049–4063 http://dx.doi.org/10.1090/S0002-9939-09-10075-8 Zbl1243.11088
  3. [3] Chandee V., Li X., Lower bounds for small fractional moments of Dirichlet L-functions, Int. Math. Res. Not. IMRN, 2013, 19, 4349–4381 Zbl06438745
  4. [4] Conrey J.B., The fourth moment of derivatives of the Riemann zeta-function, Quart. J. Math. Oxford, 1988, 39(153), 21–36 http://dx.doi.org/10.1093/qmath/39.1.21 Zbl0644.10028
  5. [5] Davenport H., Multiplicative Number Theory, 3rd ed., Grad. Texts in Math., 74, Springer, New York, 2000 Zbl1002.11001
  6. [6] Heath-Brown D.R., The fourth power mean of Dirichlet’s L-functions, Analysis, 1981, 1(1), 25–32 http://dx.doi.org/10.1524/anly.1981.1.1.25 Zbl0479.10027
  7. [7] Heath-Brown D.R., Fractional moments of Dirichlet L-functions, Acta Arith., 2010, 145(4), 397–409 http://dx.doi.org/10.4064/aa145-4-5 Zbl1248.11059
  8. [8] Koltes T., Soundararajan’s Upper Bound on Moments of the Riemann Zeta Function, Bachelor thesis, Swiss Federal Institute of Technology Zürich, Switzerland, 2010 
  9. [9] Michel P., VanderKam J., Non-vanishing of high derivatives of Dirichlet L-functions at the central point, J. Number Theory, 2000, 81(1), 130–148 http://dx.doi.org/10.1006/jnth.1999.2460 Zbl1001.11032
  10. [10] Milinovich M.B., Upper bounds for moments of ζ′(ρ), Bull. Lond. Math. Soc., 2010, 42(1), 28–44 http://dx.doi.org/10.1112/blms/bdp096 
  11. [11] Milinovich M.B., Moments of the Riemann zeta-function at its relative extrema on the critical line, Bull. Lond. Math. Soc., 2011, 43(6), 1119–1129 http://dx.doi.org/10.1112/blms/bdr047 Zbl1300.11088
  12. [12] Paley R.E.A.C., On the k-analogues of some theorems in the theory of the Riemann ζ-function, Proc. Lond. Math. Soc., 1931, 32, 273–311 http://dx.doi.org/10.1112/plms/s2-32.1.273 Zbl0002.01601
  13. [13] Radziwiłł M., The 4.36th moment of the Riemann zeta-function, Int. Math. Res. Not. IMRN, 2012, 18, 4245–4259 Zbl1290.11120
  14. [14] Rudnick Z., Soundararajan K., Lower bounds for moments of L-functions, Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6837–6838 http://dx.doi.org/10.1073/pnas.0501723102 Zbl1159.11317
  15. [15] Sono K., Lower bounds for the moments of the derivatives of the Riemann zeta-function and Dirichlet L-functions, Lith. Math. J., 2012, 52(4), 420–434 http://dx.doi.org/10.1007/s10986-012-9184-2 Zbl1321.11084
  16. [16] Soundararajan K., The fourth moment of Dirichlet L-functions, In: Analytic Number Theory, Göttingen, June 20–24, 2005, Clay Math. Proc., 7, American Mathematical Society, Providence, 2007, 239–246 Zbl1208.11102
  17. [17] Soundararajan K., Moments of the Riemann zeta function, Ann. of Math., 2009, 170(2), 981–993 http://dx.doi.org/10.4007/annals.2009.170.981 Zbl1251.11058
  18. [18] Young M.P., The fourth moment of Dirichlet L-functions, Ann. of Math., 2011, 173(1), 1–50 http://dx.doi.org/10.4007/annals.2011.173.1.1 Zbl1296.11112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.