# Upper bounds for the moments of derivatives of Dirichlet L-functions

Open Mathematics (2014)

- Volume: 12, Issue: 6, page 848-860
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topKeiju Sono. "Upper bounds for the moments of derivatives of Dirichlet L-functions." Open Mathematics 12.6 (2014): 848-860. <http://eudml.org/doc/269139>.

@article{KeijuSono2014,

abstract = {In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.},

author = {Keiju Sono},

journal = {Open Mathematics},

keywords = {Dirichlet L-function; Central value; Moment; Generalized Riemann hypothesis; Dirichlet -function; central value; moment; generalized Riemann hypothesis},

language = {eng},

number = {6},

pages = {848-860},

title = {Upper bounds for the moments of derivatives of Dirichlet L-functions},

url = {http://eudml.org/doc/269139},

volume = {12},

year = {2014},

}

TY - JOUR

AU - Keiju Sono

TI - Upper bounds for the moments of derivatives of Dirichlet L-functions

JO - Open Mathematics

PY - 2014

VL - 12

IS - 6

SP - 848

EP - 860

AB - In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.

LA - eng

KW - Dirichlet L-function; Central value; Moment; Generalized Riemann hypothesis; Dirichlet -function; central value; moment; generalized Riemann hypothesis

UR - http://eudml.org/doc/269139

ER -

## References

top- [1] Bui H.M., Milinovich M.B., Central values of derivatives of Dirichlet L-functions, Int. J. Number Theory, 2011, 7(2), 371–388 http://dx.doi.org/10.1142/S1793042111004125 Zbl1234.11108
- [2] Chandee V., Explicit upper bounds for L-functions on the critical line, Proc. Amer. Math. Soc., 2009, 137(12), 4049–4063 http://dx.doi.org/10.1090/S0002-9939-09-10075-8 Zbl1243.11088
- [3] Chandee V., Li X., Lower bounds for small fractional moments of Dirichlet L-functions, Int. Math. Res. Not. IMRN, 2013, 19, 4349–4381 Zbl06438745
- [4] Conrey J.B., The fourth moment of derivatives of the Riemann zeta-function, Quart. J. Math. Oxford, 1988, 39(153), 21–36 http://dx.doi.org/10.1093/qmath/39.1.21 Zbl0644.10028
- [5] Davenport H., Multiplicative Number Theory, 3rd ed., Grad. Texts in Math., 74, Springer, New York, 2000 Zbl1002.11001
- [6] Heath-Brown D.R., The fourth power mean of Dirichlet’s L-functions, Analysis, 1981, 1(1), 25–32 http://dx.doi.org/10.1524/anly.1981.1.1.25 Zbl0479.10027
- [7] Heath-Brown D.R., Fractional moments of Dirichlet L-functions, Acta Arith., 2010, 145(4), 397–409 http://dx.doi.org/10.4064/aa145-4-5 Zbl1248.11059
- [8] Koltes T., Soundararajan’s Upper Bound on Moments of the Riemann Zeta Function, Bachelor thesis, Swiss Federal Institute of Technology Zürich, Switzerland, 2010
- [9] Michel P., VanderKam J., Non-vanishing of high derivatives of Dirichlet L-functions at the central point, J. Number Theory, 2000, 81(1), 130–148 http://dx.doi.org/10.1006/jnth.1999.2460 Zbl1001.11032
- [10] Milinovich M.B., Upper bounds for moments of ζ′(ρ), Bull. Lond. Math. Soc., 2010, 42(1), 28–44 http://dx.doi.org/10.1112/blms/bdp096
- [11] Milinovich M.B., Moments of the Riemann zeta-function at its relative extrema on the critical line, Bull. Lond. Math. Soc., 2011, 43(6), 1119–1129 http://dx.doi.org/10.1112/blms/bdr047 Zbl1300.11088
- [12] Paley R.E.A.C., On the k-analogues of some theorems in the theory of the Riemann ζ-function, Proc. Lond. Math. Soc., 1931, 32, 273–311 http://dx.doi.org/10.1112/plms/s2-32.1.273 Zbl0002.01601
- [13] Radziwiłł M., The 4.36th moment of the Riemann zeta-function, Int. Math. Res. Not. IMRN, 2012, 18, 4245–4259 Zbl1290.11120
- [14] Rudnick Z., Soundararajan K., Lower bounds for moments of L-functions, Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6837–6838 http://dx.doi.org/10.1073/pnas.0501723102 Zbl1159.11317
- [15] Sono K., Lower bounds for the moments of the derivatives of the Riemann zeta-function and Dirichlet L-functions, Lith. Math. J., 2012, 52(4), 420–434 http://dx.doi.org/10.1007/s10986-012-9184-2 Zbl1321.11084
- [16] Soundararajan K., The fourth moment of Dirichlet L-functions, In: Analytic Number Theory, Göttingen, June 20–24, 2005, Clay Math. Proc., 7, American Mathematical Society, Providence, 2007, 239–246 Zbl1208.11102
- [17] Soundararajan K., Moments of the Riemann zeta function, Ann. of Math., 2009, 170(2), 981–993 http://dx.doi.org/10.4007/annals.2009.170.981 Zbl1251.11058
- [18] Young M.P., The fourth moment of Dirichlet L-functions, Ann. of Math., 2011, 173(1), 1–50 http://dx.doi.org/10.4007/annals.2011.173.1.1 Zbl1296.11112

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.