On a q-analogue of Stancu operators
Open Mathematics (2010)
- Volume: 8, Issue: 1, page 191-198
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topOctavian Agratini. "On a q-analogue of Stancu operators." Open Mathematics 8.1 (2010): 191-198. <http://eudml.org/doc/269149>.
@article{OctavianAgratini2010,
abstract = {This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.},
author = {Octavian Agratini},
journal = {Open Mathematics},
keywords = {q-integers; q-Bernstein polynomials; Uniform convergence; Smoothness; Lipschitz-type maximal function; -integers; -Bernstein polynomials; uniform convergence; smoothness},
language = {eng},
number = {1},
pages = {191-198},
title = {On a q-analogue of Stancu operators},
url = {http://eudml.org/doc/269149},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Octavian Agratini
TI - On a q-analogue of Stancu operators
JO - Open Mathematics
PY - 2010
VL - 8
IS - 1
SP - 191
EP - 198
AB - This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.
LA - eng
KW - q-integers; q-Bernstein polynomials; Uniform convergence; Smoothness; Lipschitz-type maximal function; -integers; -Bernstein polynomials; uniform convergence; smoothness
UR - http://eudml.org/doc/269149
ER -
References
top- [1] Agratini O., Rus I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 2003, 44, 555–563 Zbl1096.41015
- [2] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, vol. 17, Walter de Gruyter & Co., Berlin, New York, 1994 Zbl0924.41001
- [3] Andrews G.E., q-Series: Their development and application in analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences, Number 66, American Mathematical Society, 1986 Zbl0594.33001
- [4] Aral A., A generalization of Szász-Mirakjan operators based on q-integers, Math. Comput. Model., 2008, 47, 1052–1062 http://dx.doi.org/10.1016/j.mcm.2007.06.018 Zbl1144.41303
- [5] Aral A., Doğru O., Bleimann, Butzer and Hahn operators based on the q-integers, J. Ineq. & Appl., 2007, ID 79410 Zbl1133.41001
- [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 2005, 76, 269–290 Zbl1142.41002
- [7] Doğru O., On statistical approximation properties of Stancu type bivariate generalization of q-Balász-Szabados operators, In: Agratini O., Blaga P. (Eds.), Proc. Int. Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, 179–194, Casa CăŢii de ştiinŢă, Cluj-Napoca, 2006 Zbl1151.41300
- [8] Il’inskii A., Ostrovska S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 2002, 116, 100–112 http://dx.doi.org/10.1006/jath.2001.3657
- [9] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002 Zbl0986.05001
- [10] Lencze B., On Lipschitz-type maximal functions and their smoothness spaces, Proc. Netherland Acad. Sci. A, 1998, 91, 53–63
- [11] Lupaş A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint, 1987, 9, 85–92 Zbl0696.41023
- [12] Lupaş A., q-analogues of Stancu operators, In: Lupaş A., Gonska H., Lupaş L. (Eds.), Mathematical analysis and approximation theory, The 5th Romanian-German Seminar on Approximation Theory and its Applications, RoGer 2002, Sibiu, Burg Verlag, 2002, 145–154
- [13] Nowak G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 2009, 350, 50–55 http://dx.doi.org/10.1016/j.jmaa.2008.09.003 Zbl1162.33009
- [14] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123, 232–255 http://dx.doi.org/10.1016/S0021-9045(03)00104-7
- [15] Ostrovska S., The first decade of the q-Bernstein polynomials: Results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2007, 2, 35–51 Zbl1159.41301
- [16] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Zbl0881.41008
- [17] Phillips G.M., A generalization of the Bernstein polynomials based on the q-integers, Anziam J., 2000, 42, 79–86 http://dx.doi.org/10.1017/S1446181100011615 Zbl0963.41005
- [18] Shisha O., Mond B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA, 1968, 60, 1196–1200 http://dx.doi.org/10.1073/pnas.60.4.1196 Zbl0164.07102
- [19] Stancu D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 1968, 8, 1173–1194 Zbl0167.05001
- [20] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 Zbl1023.41022
- [21] Videnskii V.S., On some classes of q-parametric positive operators, Operator Theory Adv. Appl., 2005, 158, 213–222 http://dx.doi.org/10.1007/3-7643-7340-7_15 Zbl1088.41008
- [22] Wang H., Voronovskaja type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2007, 145, 182–195 http://dx.doi.org/10.1016/j.jat.2006.08.005 Zbl1112.41016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.