On a q-analogue of Stancu operators

Octavian Agratini

Open Mathematics (2010)

  • Volume: 8, Issue: 1, page 191-198
  • ISSN: 2391-5455

Abstract

top
This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.

How to cite

top

Octavian Agratini. "On a q-analogue of Stancu operators." Open Mathematics 8.1 (2010): 191-198. <http://eudml.org/doc/269149>.

@article{OctavianAgratini2010,
abstract = {This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.},
author = {Octavian Agratini},
journal = {Open Mathematics},
keywords = {q-integers; q-Bernstein polynomials; Uniform convergence; Smoothness; Lipschitz-type maximal function; -integers; -Bernstein polynomials; uniform convergence; smoothness},
language = {eng},
number = {1},
pages = {191-198},
title = {On a q-analogue of Stancu operators},
url = {http://eudml.org/doc/269149},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Octavian Agratini
TI - On a q-analogue of Stancu operators
JO - Open Mathematics
PY - 2010
VL - 8
IS - 1
SP - 191
EP - 198
AB - This paper is concerned with a generalization in q-Calculus of Stancu operators. Involving modulus of continuity and Lipschitz type maximal function, we give estimates for the rate of convergence. A probabilistic approach is presented and approximation properties are established.
LA - eng
KW - q-integers; q-Bernstein polynomials; Uniform convergence; Smoothness; Lipschitz-type maximal function; -integers; -Bernstein polynomials; uniform convergence; smoothness
UR - http://eudml.org/doc/269149
ER -

References

top
  1. [1] Agratini O., Rus I.A., Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 2003, 44, 555–563 Zbl1096.41015
  2. [2] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, vol. 17, Walter de Gruyter & Co., Berlin, New York, 1994 Zbl0924.41001
  3. [3] Andrews G.E., q-Series: Their development and application in analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences, Number 66, American Mathematical Society, 1986 Zbl0594.33001
  4. [4] Aral A., A generalization of Szász-Mirakjan operators based on q-integers, Math. Comput. Model., 2008, 47, 1052–1062 http://dx.doi.org/10.1016/j.mcm.2007.06.018 Zbl1144.41303
  5. [5] Aral A., Doğru O., Bleimann, Butzer and Hahn operators based on the q-integers, J. Ineq. & Appl., 2007, ID 79410 Zbl1133.41001
  6. [6] Derriennic M.-M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 2005, 76, 269–290 Zbl1142.41002
  7. [7] Doğru O., On statistical approximation properties of Stancu type bivariate generalization of q-Balász-Szabados operators, In: Agratini O., Blaga P. (Eds.), Proc. Int. Conference on Numerical Analysis and Approximation Theory, Cluj-Napoca, Romania, July 5–8, 2006, 179–194, Casa CăŢii de ştiinŢă, Cluj-Napoca, 2006 Zbl1151.41300
  8. [8] Il’inskii A., Ostrovska S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 2002, 116, 100–112 http://dx.doi.org/10.1006/jath.2001.3657 
  9. [9] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002 Zbl0986.05001
  10. [10] Lencze B., On Lipschitz-type maximal functions and their smoothness spaces, Proc. Netherland Acad. Sci. A, 1998, 91, 53–63 
  11. [11] Lupaş A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint, 1987, 9, 85–92 Zbl0696.41023
  12. [12] Lupaş A., q-analogues of Stancu operators, In: Lupaş A., Gonska H., Lupaş L. (Eds.), Mathematical analysis and approximation theory, The 5th Romanian-German Seminar on Approximation Theory and its Applications, RoGer 2002, Sibiu, Burg Verlag, 2002, 145–154 
  13. [13] Nowak G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 2009, 350, 50–55 http://dx.doi.org/10.1016/j.jmaa.2008.09.003 Zbl1162.33009
  14. [14] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123, 232–255 http://dx.doi.org/10.1016/S0021-9045(03)00104-7 
  15. [15] Ostrovska S., The first decade of the q-Bernstein polynomials: Results and perspectives, Journal of Mathematical Analysis and Approximation Theory, 2007, 2, 35–51 Zbl1159.41301
  16. [16] Phillips G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518 Zbl0881.41008
  17. [17] Phillips G.M., A generalization of the Bernstein polynomials based on the q-integers, Anziam J., 2000, 42, 79–86 http://dx.doi.org/10.1017/S1446181100011615 Zbl0963.41005
  18. [18] Shisha O., Mond B., The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci. USA, 1968, 60, 1196–1200 http://dx.doi.org/10.1073/pnas.60.4.1196 Zbl0164.07102
  19. [19] Stancu D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 1968, 8, 1173–1194 Zbl0167.05001
  20. [20] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx., 2000, 29, 221–229 Zbl1023.41022
  21. [21] Videnskii V.S., On some classes of q-parametric positive operators, Operator Theory Adv. Appl., 2005, 158, 213–222 http://dx.doi.org/10.1007/3-7643-7340-7_15 Zbl1088.41008
  22. [22] Wang H., Voronovskaja type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2007, 145, 182–195 http://dx.doi.org/10.1016/j.jat.2006.08.005 Zbl1112.41016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.