Another consequence of tanahashi’s argument on best possibility of the grand Furuta inequality

Tatsuya Koizumi; Keiichi Watanabe

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 368-375
  • ISSN: 2391-5455

Abstract

top
We show that Tanahashi’s argument on best possibility of the grand Furuta inequality has an additional consequence.

How to cite

top

Tatsuya Koizumi, and Keiichi Watanabe. "Another consequence of tanahashi’s argument on best possibility of the grand Furuta inequality." Open Mathematics 11.2 (2013): 368-375. <http://eudml.org/doc/269150>.

@article{TatsuyaKoizumi2013,
abstract = {We show that Tanahashi’s argument on best possibility of the grand Furuta inequality has an additional consequence.},
author = {Tatsuya Koizumi, Keiichi Watanabe},
journal = {Open Mathematics},
keywords = {Löwner-Heinz inequality; Furuta inequality; Order preserving operator inequality; order preserving operator inequality},
language = {eng},
number = {2},
pages = {368-375},
title = {Another consequence of tanahashi’s argument on best possibility of the grand Furuta inequality},
url = {http://eudml.org/doc/269150},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Tatsuya Koizumi
AU - Keiichi Watanabe
TI - Another consequence of tanahashi’s argument on best possibility of the grand Furuta inequality
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 368
EP - 375
AB - We show that Tanahashi’s argument on best possibility of the grand Furuta inequality has an additional consequence.
LA - eng
KW - Löwner-Heinz inequality; Furuta inequality; Order preserving operator inequality; order preserving operator inequality
UR - http://eudml.org/doc/269150
ER -

References

top
  1. [1] Ando T., Hiai F., Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 1994, 197/198, 113–131 http://dx.doi.org/10.1016/0024-3795(94)90484-7 Zbl0793.15011
  2. [2] Fujii M., Matsumoto A., Nakamoto R., A short proof of the best possibility for the grand Furuta inequality, J. Inequal. Appl., 1999, 4(4), 339–344 Zbl0949.47015
  3. [3] Furuta T., A ≥ B ≥ 0 assures (B rA pB r)1/q ≥ B (p+2r)/q for r ≥ 0, p ≥ 0, q ≥ 1 with (1 + 2r)q ≥ p + 2r, Proc. Amer. Math. Soc., 1987, 101(1), 85–88 
  4. [4] Furuta T., Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl., 1995, 219, 139–155 http://dx.doi.org/10.1016/0024-3795(93)00203-C 
  5. [5] Heinz E., Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 1951, 123, 415–438 http://dx.doi.org/10.1007/BF02054965 Zbl0043.32603
  6. [6] Löwner K., Über monotone Matrixfunktionen, Math. Z., 1934, 38(1), 177–216 http://dx.doi.org/10.1007/BF01170633 Zbl0008.11301
  7. [7] Tanahashi K., Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 1996, 124(1), 141–146 http://dx.doi.org/10.1090/S0002-9939-96-03055-9 Zbl0841.47012
  8. [8] Tanahashi K., The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 2000, 128(2), 511–519 http://dx.doi.org/10.1090/S0002-9939-99-05261-2 Zbl0943.47016
  9. [9] Yamazaki T., Simplified proof of Tanahashi’s result on the best possibility of generalized Furuta inequality, Math. Inequal. Appl., 1999, 2(3), 473–477 Zbl0938.47015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.