Harmonic conformal flows on manifolds of constant curvature

Amine Fawaz

Open Mathematics (2007)

  • Volume: 5, Issue: 3, page 493-504
  • ISSN: 2391-5455

Abstract

top
We compute the energy of conformal flows on Riemannian manifolds and we prove that conformal flows on manifolds of constant curvature are critical if and only if they are isometric.

How to cite

top

Amine Fawaz. "Harmonic conformal flows on manifolds of constant curvature." Open Mathematics 5.3 (2007): 493-504. <http://eudml.org/doc/269154>.

@article{AmineFawaz2007,
abstract = {We compute the energy of conformal flows on Riemannian manifolds and we prove that conformal flows on manifolds of constant curvature are critical if and only if they are isometric.},
author = {Amine Fawaz},
journal = {Open Mathematics},
keywords = {basic form; energy; foliation; geodesic curvature; harmonic; mean curvature; projectable vector field; symmetric functions; umbilical; conformal flow; isometric flow; constant curvature},
language = {eng},
number = {3},
pages = {493-504},
title = {Harmonic conformal flows on manifolds of constant curvature},
url = {http://eudml.org/doc/269154},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Amine Fawaz
TI - Harmonic conformal flows on manifolds of constant curvature
JO - Open Mathematics
PY - 2007
VL - 5
IS - 3
SP - 493
EP - 504
AB - We compute the energy of conformal flows on Riemannian manifolds and we prove that conformal flows on manifolds of constant curvature are critical if and only if they are isometric.
LA - eng
KW - basic form; energy; foliation; geodesic curvature; harmonic; mean curvature; projectable vector field; symmetric functions; umbilical; conformal flow; isometric flow; constant curvature
UR - http://eudml.org/doc/269154
ER -

References

top
  1. [1] D.E Blair: “Contact manifolds in Riemannian geometry”, Lect. Notes Math., Vol. 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0319.53026
  2. [2] V. Borelliand F. Brito, O. Gil-Medrano: “The Infimum of The Energy of Unit Vector Fields on Odd-Dimensional Spheres”, Ann. Glob. Anal. Geom., Vol. 23 (2003), pp. 129–140. http://dx.doi.org/10.1023/A:1022404728764 Zbl1031.53090
  3. [3] F. Brito and P. Chacon: “Energy of Global Frames”, To appear in the J. Aust. Math. Soc.. 
  4. [4] M. Berger M. and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differ. Geom., Vol. 3, (1969), pp. 379–392. Zbl0194.53103
  5. [5] F. Brito, R. Langevin R. and H. Rosenberg: “Intégrales de courbure sur des variétées feuilletées.”, J. Differ. Geometry, Vol. 16, (1981), pp. 19–50. Zbl0472.53049
  6. [6] P. Baird and J.C. Wood: “Harmonic Morphisms, Seifert Fibre Spaces and Conformal Foliations”, P. Lond. Math. Soc. Vol. 64, (1992), pp. 170–196. http://dx.doi.org/10.1112/plms/s3-64.1.170 Zbl0755.58019
  7. [7] Y. Carrière: “Flots Riemanniens, in “Structure Transverse des Feuilletages”, Astéerisque, Vo. 116 (1984), pp. 31–52. 
  8. [8] J. Eells and J. Sampson: “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., Vol. 86, (1964), pp. 109–160. http://dx.doi.org/10.2307/2373037 Zbl0122.40102
  9. [9] A. Fawaz: “Energy and Riemannian Flows”, To appear in Geometriae Dedicata. Zbl1179.53036
  10. [10] A. Fawaz: “Energy and Foliations on Riemann Surfaces”, Ann. Glob. Anal. Geom., Vol. 28 (2005), pp. 75–89. http://dx.doi.org/10.1007/s10455-005-4405-0 Zbl1079.53042
  11. [11] R. Langevin: “Feuilletages, énergies et cristaux liquides”, Astérisque Vols. 107-108, (1983), pp. 201–213. Zbl0527.53023
  12. [12] W. Poor: Differential Geometric Structures, McGraw Hill Book Company, New York etc. 1981. 
  13. [13] P. Tondeur: Geometry of Foliations, Monographs in Math. Vol. 90, Birkhäuser, 1997. Zbl0905.53002
  14. [14] G. Wiegmink: “Total bending of vector fields on the sphere S 3”, Differ. Geome. Appl., Vol. 6, (1996), pp. 219–236 http://dx.doi.org/10.1016/0926-2245(96)82419-3 
  15. [15] G. Wiegmink: “Total bending of vector fields on Riemannian manifolds”, Math. Ann., Vol. 303, (1995), pp. 325–344. http://dx.doi.org/10.1007/BF01460993 Zbl0834.53034
  16. [16] C.M. Wood: “On the energy of a unit vector field”, Geometria Dedicata, Vol. 64 (1997), pp. 319–330. http://dx.doi.org/10.1023/A:1017976425512 
  17. [17] K. Yano: Integral Formulas in Riemannian Geometry, Marcel-Decker Inc., New York, 1970. Zbl0213.23801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.