On components of the Auslander-Reiten quiver of trivial extensions of 2-fundamental algebras which contain projective modules

Jaworska Alicja

Open Mathematics (2007)

  • Volume: 5, Issue: 4, page 665-685
  • ISSN: 2391-5455

Abstract

top
Trivial extensions of a certain subclass of minimal 2-fundamental algebras are examined. For such algebras the characterization of components of the Auslander-Reiten quiver which contain indecomposable projective modules is given.

How to cite

top

Jaworska Alicja. "On components of the Auslander-Reiten quiver of trivial extensions of 2-fundamental algebras which contain projective modules." Open Mathematics 5.4 (2007): 665-685. <http://eudml.org/doc/269177>.

@article{JaworskaAlicja2007,
abstract = {Trivial extensions of a certain subclass of minimal 2-fundamental algebras are examined. For such algebras the characterization of components of the Auslander-Reiten quiver which contain indecomposable projective modules is given.},
author = {Jaworska Alicja},
journal = {Open Mathematics},
keywords = {Trivial extension; Minimal 2-fundamental algebra; Auslander-Reiten quiver; Generalized standard components; trivial extensions; Auslander-Reiten quivers; generalized standard components; minimal 2-fundamental algebras; components},
language = {eng},
number = {4},
pages = {665-685},
title = {On components of the Auslander-Reiten quiver of trivial extensions of 2-fundamental algebras which contain projective modules},
url = {http://eudml.org/doc/269177},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Jaworska Alicja
TI - On components of the Auslander-Reiten quiver of trivial extensions of 2-fundamental algebras which contain projective modules
JO - Open Mathematics
PY - 2007
VL - 5
IS - 4
SP - 665
EP - 685
AB - Trivial extensions of a certain subclass of minimal 2-fundamental algebras are examined. For such algebras the characterization of components of the Auslander-Reiten quiver which contain indecomposable projective modules is given.
LA - eng
KW - Trivial extension; Minimal 2-fundamental algebra; Auslander-Reiten quiver; Generalized standard components; trivial extensions; Auslander-Reiten quivers; generalized standard components; minimal 2-fundamental algebras; components
UR - http://eudml.org/doc/269177
ER -

References

top
  1. [1] I. Assem, D. Simson and A. Skowroński: Elements of the representation theory of associative algebras, Vol. 1, Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006. Zbl1092.16001
  2. [2] M. Auslander and I. Reiten: “Uniserial functors”, Representation theory II, Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., (1979), pp. 1–47, Lecture Notes in Math., 832, Springer, Berlin, 1980. 
  3. [3] M.C.R. Butler and C.M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, Vol. 15, (1987), no. 1–2, pp. 145–179. http://dx.doi.org/10.1080/00927878708823416 Zbl0612.16013
  4. [4] P. Gabriel: “Auslander-Reiten sequences and representation-finite algebras”, Representation theory I, Proc. Workshop, Carleton Univ., Ottawa, Ont., (1979), pp. 1–71, Lecture Notes in Math., 831, Springer, Berlin, 1980. 
  5. [5] C. Geiss: “On components of type 𝔸 for string algebras”, Comm. Algebra, Vol. 26, (1998), no. 3, pp. 749–758. http://dx.doi.org/10.1080/00927879808826161 
  6. [6] A. Jaworska and Z. Pogorzały: “On trivial extensions of 2-fundamental algebras”, Comm. Algebra, Vol. 34, (2006), no. 11, pp. 3935–3947. http://dx.doi.org/10.1080/00927870600862748 Zbl1152.16017
  7. [7] Z. Pogorzały and M. Sufranek: “Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras”, Colloq. Math., Vol. 99, (2004), no. 1, pp. 111–144. Zbl1107.16022
  8. [8] A. Skowroński: “Generalized standard Auslander-Reiten components”, J. Math. Soc. Japan, Vol. 46, (1994), no. 3, pp. 517–543. http://dx.doi.org/10.2969/jmsj/04630517 Zbl0828.16011
  9. [9] A. Skowroński: Algebras of polynomial growth, Topics in algebra, Part 1 (Warsaw, 1988), pp. 535–568, Banach Center Publ., 26, Part 1, PWN, Warsaw, 1990. 
  10. [10] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. Zbl0511.16021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.