Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition
Open Mathematics (2014)
- Volume: 12, Issue: 4, page 611-622
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bazzaev A.K., Shkhanukov-Lafishev M.Kh., Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions, Comput. Math. Math. Phys., 2010, 50(7), 1141–1149 http://dx.doi.org/10.1134/S0965542510070031 Zbl1224.65198
- [2] Chen J., Liu F., Anh V., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 2008, 338(2), 1364–1377 http://dx.doi.org/10.1016/j.jmaa.2007.06.023 Zbl1138.35373
- [3] Debnath L., Bhatta D., Integral Transforms and Their Applications, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007 Zbl1113.44001
- [4] Duan J.-S., Wang Z., Fu S.-Z., Fractional diffusion equation in a half-space with Robin boundary condition, Centr. Eur. J. Phys., 2013, 11(6), 799–805 http://dx.doi.org/10.2478/s11534-013-0206-4
- [5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of Integral Transforms, I, McGraw-Hill, New York, 1954 Zbl0055.36401
- [6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, III, McGraw-Hill, New York, 1955 Zbl0064.06302
- [7] Galitsyn A.S., Zhukovsky A.N., Integral Transforms and Special Functions in Heat Conduction Problems, Naukova Dumka, Kiev, 1976 (in Russian)
- [8] Gorenflo R., Luchko Yu., Mainardi F., Analytical properties and applications of the Wright functions, Fract. Calc. Appl. Anal., 1999, 2(4), 383–414 Zbl1027.33006
- [9] Gorenflo R., Mainardi F., Fractional calculus: Integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, Springer, Vienna, 1997, 223–276 http://dx.doi.org/10.1007/978-3-7091-2664-6_5
- [10] Hanyga A., Multidimensional solutions of time-fractional diffusion-wave equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2002, 458, 933–957 http://dx.doi.org/10.1098/rspa.2001.0904
- [11] Jiang W., Lin Y., Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16(9), 3639–3645 http://dx.doi.org/10.1016/j.cnsns.2010.12.019 Zbl1223.35112
- [12] Kemppainen J., Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition, Abstr. Appl. Anal., 2011, #321903 Zbl1218.35245
- [13] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204 Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0
- [14] Luikov A.V., Analytical Heat Diffusion Theory, Academic Press, New York, 1968
- [15] Mainardi F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Let., 1996, 9(6), 23–28 http://dx.doi.org/10.1016/0893-9659(96)00089-4
- [16] Mainardi F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 1996, 7(9), 1461–1477 http://dx.doi.org/10.1016/0960-0779(95)00125-5 Zbl1080.26505
- [17] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
- [18] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 2005, 28(1), 83–102 http://dx.doi.org/10.1080/014957390523741
- [19] Povstenko Y., Time-fractional radial diffusion in a sphere, Nonlinear Dynam., 2008, 53(1–2), 55–65 http://dx.doi.org/10.1007/s11071-007-9295-1 Zbl1170.76357
- [20] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity, Quart. J. Mech. Appl. Math., 2008, 61(4), 523–547 http://dx.doi.org/10.1093/qjmam/hbn016 Zbl1153.74012
- [21] Povstenko Y.Z., Thermoelasticity which uses fractional heat conduction equation, J. Math. Sci. (N.Y.), 2009, 162(2), 296–305 http://dx.doi.org/10.1007/s10958-009-9636-3
- [22] Povstenko Y., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr., 2009, T136, #014017 http://dx.doi.org/10.1088/0031-8949/2009/T136/014017
- [23] Povstenko Y., Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal., 2011, 14(3), 418–435 Zbl1273.35300
- [24] Povstenko Y.Z., Axisymmetric solutions to time-fractional heat conduction equation in a half-space under Robin boundary conditions, Int. J. Differ. Equ., 2012, #154085 Zbl1246.35203
- [25] Povstenko Y., Different kinds of boundary condition for time-fractional heat conduction equation, In: 13th International Carpathian Control Conference, May 28–31, 2012, High Tatras, IEEE, 2012, Košice, 588–591
- [26] Povstenko Y.Z., Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere, Nonlinear Anal. Real World Appl., 2012, 13(3), 1229–1238 http://dx.doi.org/10.1016/j.nonrwa.2011.10.001 Zbl1239.76057
- [27] Povstenko Y.Z., Fractional heat conduction in infinite one-dimensional composite medium, J. Thermal Stresses, 2013, 36(4), 351–363 http://dx.doi.org/10.1080/01495739.2013.770693
- [28] Povstenko Y.Z., Fundamental solutions to Robin boundary-value problems for the time-fractional heat-conduction equation in a half line, J. Math. Sci. (N.Y.), 2013, 194(3), 322–329 http://dx.doi.org/10.1007/s10958-013-1531-2
- [29] Povstenko Y., Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition, Fract. Calc. Appl. Anal., 2013, 16(2), 354–369 Zbl1312.35186
- [30] Samko S.G, Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993
- [31] Sandev T., Tomovski Ž., The general time fractional wave equation for a vibrating string, J. Phys. A, Math. Theor., 2010, 43(5), #055204 http://dx.doi.org/10.1088/1751-8113/43/5/055204 Zbl05685650
- [32] Schneider W.R., Wyss W., Fractional diffusion and wave equations, J. Math. Phys., 1989, 30(1), 134–144 http://dx.doi.org/10.1063/1.528578 Zbl0692.45004
- [33] Tomovski Ž., Sandev T., Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions, Nonlinear Dynam., 2013, 71(4), 671–683 http://dx.doi.org/10.1007/s11071-012-0710-x
- [34] Wyss W., The fractional diffusion equation, J. Math. Phys., 1986, 27(11), 2782–2785 http://dx.doi.org/10.1063/1.527251 Zbl0632.35031
- [35] Zacher R., Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, Differential Integral Equations, 2006, 19(10), 1129–1156 Zbl1212.45015