# Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition

Open Mathematics (2014)

- Volume: 12, Issue: 4, page 611-622
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topYuriy Povstenko. "Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition." Open Mathematics 12.4 (2014): 611-622. <http://eudml.org/doc/269178>.

@article{YuriyPovstenko2014,

abstract = {The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.},

author = {Yuriy Povstenko},

journal = {Open Mathematics},

keywords = {Fractional calculus; Diffusion-wave equation; Mittag-Leffler function; Robin boundary condition; Non-Fourier heat conduction; fractional heat conduction equation; fractional calculus; diffusion-wave equation; non-Fourier heat conduction},

language = {eng},

number = {4},

pages = {611-622},

title = {Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition},

url = {http://eudml.org/doc/269178},

volume = {12},

year = {2014},

}

TY - JOUR

AU - Yuriy Povstenko

TI - Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition

JO - Open Mathematics

PY - 2014

VL - 12

IS - 4

SP - 611

EP - 622

AB - The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.

LA - eng

KW - Fractional calculus; Diffusion-wave equation; Mittag-Leffler function; Robin boundary condition; Non-Fourier heat conduction; fractional heat conduction equation; fractional calculus; diffusion-wave equation; non-Fourier heat conduction

UR - http://eudml.org/doc/269178

ER -

## References

top- [1] Bazzaev A.K., Shkhanukov-Lafishev M.Kh., Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions, Comput. Math. Math. Phys., 2010, 50(7), 1141–1149 http://dx.doi.org/10.1134/S0965542510070031 Zbl1224.65198
- [2] Chen J., Liu F., Anh V., Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 2008, 338(2), 1364–1377 http://dx.doi.org/10.1016/j.jmaa.2007.06.023 Zbl1138.35373
- [3] Debnath L., Bhatta D., Integral Transforms and Their Applications, 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007 Zbl1113.44001
- [4] Duan J.-S., Wang Z., Fu S.-Z., Fractional diffusion equation in a half-space with Robin boundary condition, Centr. Eur. J. Phys., 2013, 11(6), 799–805 http://dx.doi.org/10.2478/s11534-013-0206-4
- [5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Tables of Integral Transforms, I, McGraw-Hill, New York, 1954 Zbl0055.36401
- [6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, III, McGraw-Hill, New York, 1955 Zbl0064.06302
- [7] Galitsyn A.S., Zhukovsky A.N., Integral Transforms and Special Functions in Heat Conduction Problems, Naukova Dumka, Kiev, 1976 (in Russian)
- [8] Gorenflo R., Luchko Yu., Mainardi F., Analytical properties and applications of the Wright functions, Fract. Calc. Appl. Anal., 1999, 2(4), 383–414 Zbl1027.33006
- [9] Gorenflo R., Mainardi F., Fractional calculus: Integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, Springer, Vienna, 1997, 223–276 http://dx.doi.org/10.1007/978-3-7091-2664-6_5
- [10] Hanyga A., Multidimensional solutions of time-fractional diffusion-wave equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2002, 458, 933–957 http://dx.doi.org/10.1098/rspa.2001.0904
- [11] Jiang W., Lin Y., Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16(9), 3639–3645 http://dx.doi.org/10.1016/j.cnsns.2010.12.019 Zbl1223.35112
- [12] Kemppainen J., Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition, Abstr. Appl. Anal., 2011, #321903 Zbl1218.35245
- [13] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204 Elsevier, Amsterdam, 2006 http://dx.doi.org/10.1016/S0304-0208(06)80001-0
- [14] Luikov A.V., Analytical Heat Diffusion Theory, Academic Press, New York, 1968
- [15] Mainardi F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Let., 1996, 9(6), 23–28 http://dx.doi.org/10.1016/0893-9659(96)00089-4
- [16] Mainardi F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 1996, 7(9), 1461–1477 http://dx.doi.org/10.1016/0960-0779(95)00125-5 Zbl1080.26505
- [17] Podlubny I., Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999
- [18] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 2005, 28(1), 83–102 http://dx.doi.org/10.1080/014957390523741
- [19] Povstenko Y., Time-fractional radial diffusion in a sphere, Nonlinear Dynam., 2008, 53(1–2), 55–65 http://dx.doi.org/10.1007/s11071-007-9295-1 Zbl1170.76357
- [20] Povstenko Y.Z., Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity, Quart. J. Mech. Appl. Math., 2008, 61(4), 523–547 http://dx.doi.org/10.1093/qjmam/hbn016 Zbl1153.74012
- [21] Povstenko Y.Z., Thermoelasticity which uses fractional heat conduction equation, J. Math. Sci. (N.Y.), 2009, 162(2), 296–305 http://dx.doi.org/10.1007/s10958-009-9636-3
- [22] Povstenko Y., Theory of thermoelasticity based on the space-time-fractional heat conduction equation, Phys. Scr., 2009, T136, #014017 http://dx.doi.org/10.1088/0031-8949/2009/T136/014017
- [23] Povstenko Y., Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal., 2011, 14(3), 418–435 Zbl1273.35300
- [24] Povstenko Y.Z., Axisymmetric solutions to time-fractional heat conduction equation in a half-space under Robin boundary conditions, Int. J. Differ. Equ., 2012, #154085 Zbl1246.35203
- [25] Povstenko Y., Different kinds of boundary condition for time-fractional heat conduction equation, In: 13th International Carpathian Control Conference, May 28–31, 2012, High Tatras, IEEE, 2012, Košice, 588–591
- [26] Povstenko Y.Z., Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere, Nonlinear Anal. Real World Appl., 2012, 13(3), 1229–1238 http://dx.doi.org/10.1016/j.nonrwa.2011.10.001 Zbl1239.76057
- [27] Povstenko Y.Z., Fractional heat conduction in infinite one-dimensional composite medium, J. Thermal Stresses, 2013, 36(4), 351–363 http://dx.doi.org/10.1080/01495739.2013.770693
- [28] Povstenko Y.Z., Fundamental solutions to Robin boundary-value problems for the time-fractional heat-conduction equation in a half line, J. Math. Sci. (N.Y.), 2013, 194(3), 322–329 http://dx.doi.org/10.1007/s10958-013-1531-2
- [29] Povstenko Y., Time-fractional heat conduction in an infinite medium with a spherical hole under Robin boundary condition, Fract. Calc. Appl. Anal., 2013, 16(2), 354–369 Zbl1312.35186
- [30] Samko S.G, Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993
- [31] Sandev T., Tomovski Ž., The general time fractional wave equation for a vibrating string, J. Phys. A, Math. Theor., 2010, 43(5), #055204 http://dx.doi.org/10.1088/1751-8113/43/5/055204 Zbl05685650
- [32] Schneider W.R., Wyss W., Fractional diffusion and wave equations, J. Math. Phys., 1989, 30(1), 134–144 http://dx.doi.org/10.1063/1.528578 Zbl0692.45004
- [33] Tomovski Ž., Sandev T., Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions, Nonlinear Dynam., 2013, 71(4), 671–683 http://dx.doi.org/10.1007/s11071-012-0710-x
- [34] Wyss W., The fractional diffusion equation, J. Math. Phys., 1986, 27(11), 2782–2785 http://dx.doi.org/10.1063/1.527251 Zbl0632.35031
- [35] Zacher R., Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, Differential Integral Equations, 2006, 19(10), 1129–1156 Zbl1212.45015

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.