The Lindelöf principle in ℂn
Open Mathematics (2013)
- Volume: 11, Issue: 10, page 1763-1773
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPeter Dovbush. "The Lindelöf principle in ℂn." Open Mathematics 11.10 (2013): 1763-1773. <http://eudml.org/doc/269191>.
@article{PeterDovbush2013,
abstract = {Let D be a bounded domain in ℂn. A holomorphic function f: D → ℂ is called normal function if f satisfies a Lipschitz condition with respect to the Kobayashi metric on D and the spherical metric on the Riemann sphere ̅ℂ. We formulate and prove a few Lindelöf principles in the function theory of several complex variables.},
author = {Peter Dovbush},
journal = {Open Mathematics},
keywords = {Normal functions; Lindelöf principle; Admissible limits; normal functions; admissible limits},
language = {eng},
number = {10},
pages = {1763-1773},
title = {The Lindelöf principle in ℂn},
url = {http://eudml.org/doc/269191},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Peter Dovbush
TI - The Lindelöf principle in ℂn
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1763
EP - 1773
AB - Let D be a bounded domain in ℂn. A holomorphic function f: D → ℂ is called normal function if f satisfies a Lipschitz condition with respect to the Kobayashi metric on D and the spherical metric on the Riemann sphere ̅ℂ. We formulate and prove a few Lindelöf principles in the function theory of several complex variables.
LA - eng
KW - Normal functions; Lindelöf principle; Admissible limits; normal functions; admissible limits
UR - http://eudml.org/doc/269191
ER -
References
top- [1] Abate M., The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal. Math., 1990, 54, 189–228 http://dx.doi.org/10.1007/BF02796148[Crossref] Zbl0694.32015
- [2] Abate M., Angular derivatives in strongly pseudoconvex domains, In: Several Complex Variables and Complex Geometry, 2, Santa Cruz, 1989, Proc. Sympos. Pure Math., 52(2), American Mathematical Society, Providence, 1991, 23–40 http://dx.doi.org/10.1090/pspum/052.2/1128532[Crossref]
- [3] Abate M., The Julia-Wolff-Carathéodory theorem in polydisks, J. Anal. Math., 1998, 74, 275–306 http://dx.doi.org/10.1007/BF02819453[Crossref] Zbl0912.32005
- [4] Abate M., Angular derivatives in several complex variables, In: Real Methods in Complex and CR Geometry, Lecture Notes in Math., 1848, Springer, Berlin, 2004, 1–47 http://dx.doi.org/10.1007/978-3-540-44487-9_1[Crossref]
- [5] Abate M., Tauraso R., The Lindelöf principle and angular derivatives in convex domains of finite type, J. Aust. Math. Soc., 2002, 73(2), 221–250 http://dx.doi.org/10.1017/S1446788700008818[Crossref] Zbl1113.32301
- [6] Aladro G., Application of the Kobayashi metric to normal functions of several complex variables, Utilitas Math., 1987, 31, 13–24 Zbl0585.32027
- [7] Aladro G., Krantz S.G., A criterion for normality in ℂn, J. Math. Anal. Appl., 1991, 161(1), 1–8 http://dx.doi.org/10.1016/0022-247X(91)90356-5[Crossref]
- [8] Bagemihl F., Seidel W., Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 1960, 280, 1–17 Zbl0095.05801
- [9] Bayne R.E., Kwack M.H., A Lindelöf property for uniformly normal families, Missouri J. Math. Sci., 2010, 22(2), 130–138 Zbl1208.30033
- [10] Cameron R.H., Storvick D.A., A Lindelöf theorem and analytic continuation for functions of several variables, with an application to the Feynman integral, In: Entire Functions and Related Parts of Analysis, LaJolla, 1966, American Mathematical Society, Providence, 1968, 149–156 http://dx.doi.org/10.1090/pspum/011/0237815[Crossref]
- [11] Cima J.A., Krantz S.G., The Lindelöf principle and normal functions of several complex variables, Duke Math. J., 1983, 50(1), 303–328 http://dx.doi.org/10.1215/S0012-7094-83-05014-7[Crossref] Zbl0522.32003
- [12] Čirka E.M., The Lindelöf and Fatou theorems in ℂn, Mat. Sb. (N.S.), 1973, 92(134), 622–644 (in Russian) Zbl0285.32005
- [13] Dovbush P.V., Normal functions of several complex variables, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1981, 36(1), 38–42 (in Russian) Zbl0471.32002
- [14] Dovbush P.V., Lindelöf’s theorem in ℂn, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1981, 36(6), 33–36 (in Russian)
- [15] Dovbush P.V., Boundary behavior of normal holomorphic functions of several complex variables, Dokl. Akad. Nauk SSSR, 1982, 263(1), 14–17 (in Russian) Zbl0531.32003
- [16] Dovbush P.V., Lindelöf’s theorem in ℂn, Ukrainian Math. J., 1988, 40(6), 673–676 http://dx.doi.org/10.1007/BF01057192[Crossref] Zbl0679.32012
- [17] Dovbush P.V., Bloch functions on complex Banach manifolds, Math. Proc. R. Ir. Acad., 2008, 108(1), 27–32 http://dx.doi.org/10.3318/PRIA.2008.108.1.27[Crossref] Zbl1170.32001
- [18] Dovbush P.V., On normal and non-normal holomorphic functions on complex Banach manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2009, 8(1), 1–15 Zbl1183.32004
- [19] Dovbush P.V., Boundary behaviour of Bloch functions and normal functions, Complex Var. Elliptic Equ., 2010, 55(1–3), 157–166 Zbl1192.32006
- [20] Dovbush P.V., The Lindelöf principle for holomorphic functions of infinitely many variables, Complex Var. Elliptic Equ., 2011, 56(1–4), 315–323 Zbl1256.32002
- [21] Dovbush P.V., On the Lindelöf-Gehring-Lohwater theorem, Complex Var. Elliptic Equ., 2011, 56(5), 417–421 http://dx.doi.org/10.1080/17476931003628240[Crossref] Zbl1219.32001
- [22] Frosini C., Busemann functions and the Julia-Wolff-Carathéodory theorem for polydiscs, Adv. Geom., 2010, 10(3), 435–463 http://dx.doi.org/10.1515/advgeom.2010.016[Crossref][WoS]
- [23] Funahashi K., Normal holomorphic mappings and classical theorems of function theory, Nagoya Math. J., 1984, 94, 89–104 Zbl0533.32013
- [24] Garnett J.B., Marshall D.E., Harmonic Measure, New Math. Monogr., 2, Cambridge University Press, Cambridge, 2008
- [25] Gauthier P., A criterion for normalcy, Nagoya Math. J., 1968, 32, 277–282 Zbl0157.39802
- [26] Gavrilov V.I., Dovbush P.V., Normal functions, Math. Montisnigri, 2001, 14, 5–61 (in Russian)
- [27] Gehring F.W., Lohwater A.J., On the Lindelöf theorem, Math. Nachr., 1958, 19, 165–170 http://dx.doi.org/10.1002/mana.19580190111[Crossref] Zbl0089.05303
- [28] Hahn K.T., Inequality between the Bergman metric and Carathéodory differential metric, Proc. Amer. Math. Soc., 1978, 68(2), 193–194 Zbl0376.32020
- [29] Hahn K.T., Asymptotic behavior of normal mappings of several complex variables, Canad. J. Math., 1984, 36(4), 718–746 http://dx.doi.org/10.4153/CJM-1984-041-9[Crossref] Zbl0564.32015
- [30] Hahn K.T., Higher-dimensional generalizations of some classical theorems on normal meromorphic functions, Complex Variables Theory Appl., 1986, 6(2–4), 109–121 http://dx.doi.org/10.1080/17476938608814163[Crossref]
- [31] Hahn K.T., Nontangential limit theorems for normal mappings, Pacific J. Math., 1988, 135(1), 57–64 http://dx.doi.org/10.2140/pjm.1988.135.57[Crossref] Zbl0618.32004
- [32] Järvi P., An extension theorem for normal functions, Proc. Amer. Math. Soc., 1988, 103(4), 1171–1174 http://dx.doi.org/10.2307/2047105[Crossref] Zbl0659.32022
- [33] Joseph J.E., Kwack M.H., Some classical theorems and families of normal maps in several complex variables, Complex Variables Theory Appl., 1996, 29(4), 343–362 http://dx.doi.org/10.1080/17476939608814902[Crossref]
- [34] Kobayashi S., Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 1967, 19(4), 460–480 http://dx.doi.org/10.2969/jmsj/01940460[Crossref] Zbl0158.33201
- [35] Korányi A., Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc., 1969, 135, 507–516 [Crossref] Zbl0174.38801
- [36] Krantz S.G., The Lindelöf principle in several complex variables, J. Math. Anal. Appl., 2007, 326(2), 1190–1198 http://dx.doi.org/10.1016/j.jmaa.2006.03.059[Crossref]
- [37] Kwack M.H., Families of Normal Maps in Several Variables and Classical Theorems in Complex Analysis, Lecture Notes Ser., 33, Seoul National University, Seoul, 1996
- [38] Lehto O., Virtanen K.I., Boundary behaviour and normal meromorphic functions, Acta Math., 1957, 97(1–4), 47–65 http://dx.doi.org/10.1007/BF02392392[Crossref] Zbl0077.07702
- [39] Lindelöf E., Sur un Principe Général de l’Analyse et ses Applications á la Théorie de la Représentation Conforme, Acta Soc. Sci. Fennicae, 46(4), Suomen Tiedeseura, Helsinki, 1915 Zbl45.0665.02
- [40] Montel P., Sur les familles de fonctions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. École Norm. Sup., 1912, 29, 487–535 Zbl43.0509.05
- [41] Pommerenke Ch., Univalent Functions, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck & Ruprecht, Göttingen, 1975
- [42] Sagan H., Space-Filling Curves, Universitext, Springer, New York, 1994 http://dx.doi.org/10.1007/978-1-4612-0871-6[Crossref] Zbl0806.01019
- [43] Schiff J.L., Normal Families, Universitext, Springer, New York, 1993 http://dx.doi.org/10.1007/978-1-4612-0907-2[Crossref]
- [44] Stein E.M., Boundary Behavior of Holomorphic Functions of Several Complex Variables, Math. Notes, 11, Princeton University Press, Princeton, 1972 Zbl0242.32005
- [45] Whyburn G.T., Analytic Topology, Amer. Math. Soc. Colloq. Publ., 28, American Mathematical Society, New York, 1942
- [46] Zaidenberg M.G., Schottky-Landau growth estimates for s-normal families of holomorphic mappings, Math. Ann., 1992, 293(1), 123–141 http://dx.doi.org/10.1007/BF01444708[Crossref] Zbl0766.32005
- [47] Zavyalov B.I., Drozhzhinov Yu.N., On a multidimensional analogue of Lindelöf’s theorem, Dokl. Akad. Nauk SSSR, 1982, 262(2), 269–270 (in Russian)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.