Thin sequences in the corona of H ∞
Open Mathematics (2013)
- Volume: 11, Issue: 10, page 1843-1849
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDimcho Stankov, and Tzonio Tzonev. "Thin sequences in the corona of H ∞." Open Mathematics 11.10 (2013): 1843-1849. <http://eudml.org/doc/269194>.
@article{DimchoStankov2013,
abstract = {In this paper we consider several conditions for sequences of points in M(H ∞) and establish relations between them. We show that every interpolating sequence for QA of nontrivial points in the corona \[M(H^\infty )\backslash \mathbb \{D\}\]
of H ∞ is a thin sequence for H ∞, which satisfies an additional topological condition. The discrete sequences in the Shilov boundary of H ∞ necessarily satisfy the same condition.},
author = {Dimcho Stankov, Tzonio Tzonev},
journal = {Open Mathematics},
keywords = {Bounded analytic functions; Interpolating sequences; Thin sequences; Corona; bounded analytic functions; interpolating sequences; thin sequences},
language = {eng},
number = {10},
pages = {1843-1849},
title = {Thin sequences in the corona of H ∞},
url = {http://eudml.org/doc/269194},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Dimcho Stankov
AU - Tzonio Tzonev
TI - Thin sequences in the corona of H ∞
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1843
EP - 1849
AB - In this paper we consider several conditions for sequences of points in M(H ∞) and establish relations between them. We show that every interpolating sequence for QA of nontrivial points in the corona \[M(H^\infty )\backslash \mathbb {D}\]
of H ∞ is a thin sequence for H ∞, which satisfies an additional topological condition. The discrete sequences in the Shilov boundary of H ∞ necessarily satisfy the same condition.
LA - eng
KW - Bounded analytic functions; Interpolating sequences; Thin sequences; Corona; bounded analytic functions; interpolating sequences; thin sequences
UR - http://eudml.org/doc/269194
ER -
References
top- [1] Axler S., Gorkin P., Sequences in the maximal ideal space of H ∞, Proc. Amer. Math. Soc., 1990, 108(3), 731–740 Zbl0703.46037
- [2] Carleson L., An interpolation problem for bounded analytic functions, Amer. J. Math., 1958, 80(4), 921–930 http://dx.doi.org/10.2307/2372840[Crossref]
- [3] Garnett J.B., Bounded Analytic Functions, Grad. Texts in Math., 236, Springer, New York, 2007 Zbl1106.30001
- [4] Gorkin P., Lingenberg H.-M., Mortini R., Homeomorphic disks in the spectrum of H ∞, Indiana Univ. Math. J., 1990, 39(4), 961–983 http://dx.doi.org/10.1512/iumj.1990.39.39046[Crossref]
- [5] Gorkin P., Mortini R., Asymptotic interpolating sequences in uniform algebras, J. London Math. Soc., 2003, 67(2), 481–498 http://dx.doi.org/10.1112/S0024610702004039[Crossref] Zbl1054.46036
- [6] Gorkin P., Mortini R., Universal Blaschke products, Math. Proc. Cambridge Phil. Soc., 2004, 136(1), 175–184 http://dx.doi.org/10.1017/S0305004103007023[Crossref]
- [7] Hedenmalm H., Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc., 1987, 99(3), 489–495 http://dx.doi.org/10.1090/S0002-9939-1987-0875386-8[Crossref] Zbl0617.46059
- [8] Hoffman K., Bounded analytic functions and Gleason parts, Ann. of Math., 1967, 86(1), 74–111 http://dx.doi.org/10.2307/1970361[Crossref] Zbl0192.48302
- [9] Izuchi K., Interpolating sequences in a homeomorphic part of H ∞, Proc. Amer. Math. Soc., 1991, 111(4), 1057–1065 Zbl0726.46034
- [10] Izuchi K., Interpolating sequences in the maximal ideal space of H ∞, J. Math. Soc. Japan, 1991, 43(4), 721–731 http://dx.doi.org/10.2969/jmsj/04340721[Crossref] Zbl0754.46037
- [11] Izuchi K., Interpolating sequences in the maximal ideal space of H ∞. II, In: Operator Theory, Advances and Applications, Sapporo, 1991, Oper. Theory Adv. Appl., 59, Birkhäuser, Basel, 1992, 221–233 Zbl0799.46062
- [12] Mortini R., Interpolating sequences in the spectrum of H ∞. I, Proc. Amer. Math. Soc., 2000, 128(6), 1703–1710 http://dx.doi.org/10.1090/S0002-9939-99-05161-8[Crossref] Zbl0948.46037
- [13] Mortini R., Thin interpolating sequences in the disk, Arch. Math. (Basel), 2009, 92(5), 504–518 http://dx.doi.org/10.1007/s00013-009-3057-x[WoS][Crossref] Zbl1179.30058
- [14] Sundberg C., Wolff T.H., Interpolating sequences for QAB, Trans. Amer. Math. Soc., 1983, 276(2), 551–581 Zbl0536.30025
- [15] Tzonev Tz., Thin sequences in homeomorphic part of M(H ∞), C. R. Acad. Bulgare Sci., 2009, 62(5), 533–540 Zbl1199.30275
- [16] Tzonev Tz.G., Stankov D.K., Sufficient conditions for thinness of sequences in M(H ∞), C. R. Acad. Bulgare Sci., 2000, 53(1), 9–12 Zbl0959.46040
- [17] Wolff T., Two algebras of bounded functions, Duke Math. J., 1982, 49(2), 321–328 http://dx.doi.org/10.1215/S0012-7094-82-04920-1[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.