Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems

Yonghong Yao; Yeol Cho; Yeong-Cheng Liou

Open Mathematics (2011)

  • Volume: 9, Issue: 3, page 640-656
  • ISSN: 2391-5455

Abstract

top
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator.

How to cite

top

Yonghong Yao, Yeol Cho, and Yeong-Cheng Liou. "Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems." Open Mathematics 9.3 (2011): 640-656. <http://eudml.org/doc/269200>.

@article{YonghongYao2011,
abstract = {In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator.},
author = {Yonghong Yao, Yeol Cho, Yeong-Cheng Liou},
journal = {Open Mathematics},
keywords = {Variational inclusion; Mixed equilibrium problem; Fixed point; Optimization problem; Nonexpansive mapping; Strong convergence; variational inclusion; mixed equilibrium problem; fixed point; optimization problem; nonexpansive mapping; strong convergence},
language = {eng},
number = {3},
pages = {640-656},
title = {Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems},
url = {http://eudml.org/doc/269200},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Yonghong Yao
AU - Yeol Cho
AU - Yeong-Cheng Liou
TI - Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems
JO - Open Mathematics
PY - 2011
VL - 9
IS - 3
SP - 640
EP - 656
AB - In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator.
LA - eng
KW - Variational inclusion; Mixed equilibrium problem; Fixed point; Optimization problem; Nonexpansive mapping; Strong convergence; variational inclusion; mixed equilibrium problem; fixed point; optimization problem; nonexpansive mapping; strong convergence
UR - http://eudml.org/doc/269200
ER -

References

top
  1. [1] Adly S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 1996, 201(2), 609–630 http://dx.doi.org/10.1006/jmaa.1996.0277 
  2. [2] Agarwal R.P., Cho Y.J., Huang N.J., Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett, 2000, 13(6), 19–24 http://dx.doi.org/10.1016/S0893-9659(00)00048-3 Zbl0960.47035
  3. [3] Agarwal R.P., Huang N.J., Cho Y.J., Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings, J. Inequal. Appl., 2002, 7(6), 807–828 http://dx.doi.org/10.1155/S1025583402000425 Zbl1034.47032
  4. [4] Bauschke H.H., Borwein J.M., On projection algorithms for solving convex feasibility problems, SIAM Rev, 1996, 38(3), 367–426 http://dx.doi.org/10.1137/S0036144593251710 Zbl0865.47039
  5. [5] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1–4), 123–145 Zbl0888.49007
  6. [6] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland, Amsterdam-London, 1973 
  7. [7] Ceng L.-C, Yao J.-C, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 2008, 214(1), 186–201 http://dx.doi.org/10.1016/j.cam.2007.02.022 Zbl1143.65049
  8. [8] Ceng L.-C, Yao J.-C, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal., 2010, 72(3–4), 1922–1937 
  9. [9] Ceng L.-C, Yao J.-C, Convergence and certain control conditions for hybrid viscosity approximation methods, Nonlinear Anal., 2010, 73(7), 2078–2087 http://dx.doi.org/10.1016/j.na.2010.05.036 Zbl1229.47106
  10. [10] Chadli O., Konnov I.V., Yao J.C, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 2004, 48(3–4), 609–616 http://dx.doi.org/10.1016/j.camwa.2003.05.011 Zbl1057.49009
  11. [11] Chadli O., Schaible S., Yao J.C, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 2004, 121(3), 571–596 http://dx.doi.org/10.1023/B:JOTA.0000037604.96151.26 Zbl1107.91067
  12. [12] Chadli O., Wong N.C., Yao J.C, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl., 2003, 117(2), 245–266 http://dx.doi.org/10.1023/A:1023627606067 Zbl1141.49306
  13. [13] Chang S.S., Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 2000, 248(2), 438–454 http://dx.doi.org/10.1006/jmaa.2000.6919 Zbl1031.49018
  14. [14] Combettes PL., Hilbertian convex feasibility problem: convergence of projection methods, Appl. Math. Optim., 1997, 35(3), 311–330 Zbl0872.90069
  15. [15] Combettes PL., Hirstoaga S.A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 2005, 6(1), 117–136 Zbl1109.90079
  16. [16] Deutsch F., Yamada I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 1998, 19(1–2), 33–56 Zbl0913.47048
  17. [17] Ding X.P., Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions, Appl. Math. Comput, 2003, 141(2–3), 359–373 http://dx.doi.org/10.1016/S0096-3003(02)00261-8 Zbl1030.65071
  18. [18] Ding X.P., Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett., 2004, 17(2), 225–235 http://dx.doi.org/10.1016/S0893-9659(04)90036-5 Zbl1056.49010
  19. [19] Ding X.P., Parametric completely generalized mixed implicit quasi-variational inclusions involving/i-maximal monotone mappings, J. Comput. Appl. Math., 2005, 182(2), 252–269 http://dx.doi.org/10.1016/j.cam.2004.11.048 Zbl1071.49004
  20. [20] Ding X.P., Lin Y.C., Yao J.C, Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. Math. Mech. (English Ed.), 2006, 27(9), 1157–1164 http://dx.doi.org/10.1007/s10483-006-0901-1 Zbl1199.49010
  21. [21] Fang Y.-P., Huang N.-J., H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput, 2003, 145(2–3), 795–803 http://dx.doi.org/10.1016/S0096-3003(03)00275-3 Zbl1030.49008
  22. [22] Fang Y.-P., Huang N.-J., H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett, 2004, 17(6), 647–653 http://dx.doi.org/10.1016/S0893-9659(04)90099-7 Zbl1056.49012
  23. [23] Flåm S.D., Antipin A.S., Equilibrium programming using proximal-like algorithms, Math. Programming, 1997, 78(1), 29–41 http://dx.doi.org/10.1007/BF02614504 Zbl0890.90150
  24. [24] Huang N.-J., Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions, Comput. Math. Appl, 1998, 35(10), 1–7 http://dx.doi.org/10.1016/S0898-1221(98)00066-2 Zbl0999.47057
  25. [25] Jung J.S., Iterative algorithms with some control conditions for quadratic optimizations, Panamer. Math. J., 2006, 16(4), 13–25 Zbl1165.47058
  26. [26] Jung J.S., A general iterative scheme for k-strictly pseudo-contractive mappings and optimization problems, Appl. Math. Comput, 2010, 217(12), 5581–5588 http://dx.doi.org/10.1016/j.amc.2010.12.034 Zbl1213.65080
  27. [27] Kocourek P., Takahashi W., Yao J.-C, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 2010, 14(6), 2497–2511 Zbl1226.47053
  28. [28] Konnov I.V., Schaible S., Yao J.C., Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl, 2005, 126(2), 309–322 http://dx.doi.org/10.1007/s10957-005-4716-0 Zbl1110.49028
  29. [29] Lemaire B., Which fixed point does the iteration method select?, In: Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, 154–167 Zbl0882.65042
  30. [30] Lin L.-J., Variational inclusions problems with applications to Ekelands variational principle, fixed point and optimization problems, J. Global Optim., 2007, 39(4), 509–527 http://dx.doi.org/10.1007/s10898-007-9153-1 Zbl1190.90212
  31. [31] Moudafi A., Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 2000, 241(1), 46–55 http://dx.doi.org/10.1006/jmaa.1999.6615 
  32. [32] Noor M.A., Generalized set-valued variational inclusions and resolvent equation, J. Math. Anal. Appl., 1998, 228(1), 206–220 http://dx.doi.org/10.1006/jmaa.1998.6127 
  33. [33] Peng J.-W., Wang Y, Shyu D.S., Yao J.-C, Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl., 2008, ID 720371 Zbl1161.65050
  34. [34] Peng J.-W., Yao J.-C, A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems, Taiwanese J. Math., 2008, 12(6), 1401–1432 Zbl1185.47079
  35. [35] Plubtieng S., Punpaeng R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 336(1), 455–469 http://dx.doi.org/10.1016/j.jmaa.2007.02.044 Zbl1127.47053
  36. [36] Robinson S.M., Generalized equations and their solutions. I: Basic theory, Math. Programming Stud., 1979, 10, 128–141 Zbl0404.90093
  37. [37] Rockafellar R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 1976, 14(5), 877–898 http://dx.doi.org/10.1137/0314056 Zbl0358.90053
  38. [38] Shimoji K., Takahashi W., Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 2001, 5(2), 387–404 Zbl0993.47037
  39. [39] Suzuki T, Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 2005, 305(1), 227–239 http://dx.doi.org/10.1016/j.jmaa.2004.11.017 Zbl1068.47085
  40. [40] Tada A., Takahashi W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, In: Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2007, 609–617 Zbl1122.47055
  41. [41] Takahashi S., Takahashi W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 331(1), 506–515 http://dx.doi.org/10.1016/j.jmaa.2006.08.036 Zbl1122.47056
  42. [42] Takahashi S., Takahashi W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 2008, 69(3), 1025–1033 http://dx.doi.org/10.1016/j.na.2008.02.042 Zbl1142.47350
  43. [43] Verma R.U., A-monotonicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal., 2004, 2, 193–195 http://dx.doi.org/10.1155/S1048953304403013 Zbl1064.49012
  44. [44] Verma R.U., General system of (A,η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst., 2007, 1(3), 326–335 http://dx.doi.org/10.1016/j.nahs.2006.07.002 Zbl1117.49014
  45. [45] Xu H.K., Iterative algorithms for nonlinear operators, J. London Math. Soc, 2002, 66(1), 240–256 http://dx.doi.org/10.1112/S0024610702003332 Zbl1013.47032
  46. [46] Xu H.-K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 2004, 298(1), 279–291 http://dx.doi.org/10.1016/j.jmaa.2004.04.059 Zbl1061.47060
  47. [47] Yao Y, Liou Y.-C, Lee C, Wong M.-M., Convergence theorem for equilibrium problems and fixed point problems, Fixed Point Theory, 2009, 10(2), 347–363 Zbl1225.47120
  48. [48] Yao Y., Liou Y.-C., Yao J.-C., Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007, ID 64363 Zbl1153.54024
  49. [49] Zeng L.-C., Wu S.-Y., Yao J.-C., Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math., 2006, 10(6), 1497–1514 Zbl1121.49005
  50. [50] Zhang S.-S., Lee J.H.W., Chan C.K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), 2008, 29(5), 571–581 http://dx.doi.org/10.1007/s10483-008-0502-y Zbl1196.47047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.