Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 972-977
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVictor Przyjalkowski. "Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models." Open Mathematics 9.5 (2011): 972-977. <http://eudml.org/doc/269214>.
@article{VictorPrzyjalkowski2011,
abstract = {We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.},
author = {Victor Przyjalkowski},
journal = {Open Mathematics},
keywords = {Hori-Vafa models; Landau-Ginzburg models; Complete intersections; complete intersections; Fano variety},
language = {eng},
number = {5},
pages = {972-977},
title = {Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models},
url = {http://eudml.org/doc/269214},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Victor Przyjalkowski
TI - Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 972
EP - 977
AB - We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.
LA - eng
KW - Hori-Vafa models; Landau-Ginzburg models; Complete intersections; complete intersections; Fano variety
UR - http://eudml.org/doc/269214
ER -
References
top- [1] Dimca A., Singularities and coverings of weighted complete intersections, J. Reine Angew. Math., 1986, 366, 184–193 http://dx.doi.org/10.1515/crll.1986.366.184 Zbl0576.14047
- [2] Dolgachev I., Weighted projective varieties, In: Group Actions and Vector Fields, Vancouver, 1981, Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 http://dx.doi.org/10.1007/BFb0101508
- [3] Douai A., Construction de variétés de Frobenius via les polynômes de Laurent: une autre approche, In: Singularités, Inst. Élie Cartan, 18, Université de Nancy, Nancy, 2005, 105–123
- [4] Douai A., Mann E., The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits, preprint available at http://arxiv.org/abs/0909.4063 Zbl1273.14112
- [5] Givental A., Equivariant Gromov-Witten invariants, Int. Math. Res. Not., 1996, 613–663 Zbl0881.55006
- [6] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 Zbl1044.14018
- [7] Ilten N.O., Przyjalkowski V., Toric degenerations of Fano threefolds giving weak Landau-Ginzburg models, preprint available at http://arxiv.org/abs/1102.4664 Zbl1270.14020
- [8] Przyjalkowski V.V., Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties, Mat. Sb., 2007, 198(9), 107–122 Zbl1207.14059
- [9] Przyjalkowski V., On Landau-Ginzburg models for Fano varieties, Commun. Number Theory Phys., 2008, 1(4), 713–728 Zbl1194.14065
- [10] Przyjalkowski V., Weak Landau-Ginzburg models for smooth Fano threefolds, preprint available at http://arxiv.org/abs/0902.4668 Zbl1281.14033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.