Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models

Victor Przyjalkowski

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 972-977
  • ISSN: 2391-5455

Abstract

top
We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.

How to cite

top

Victor Przyjalkowski. "Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models." Open Mathematics 9.5 (2011): 972-977. <http://eudml.org/doc/269214>.

@article{VictorPrzyjalkowski2011,
abstract = {We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.},
author = {Victor Przyjalkowski},
journal = {Open Mathematics},
keywords = {Hori-Vafa models; Landau-Ginzburg models; Complete intersections; complete intersections; Fano variety},
language = {eng},
number = {5},
pages = {972-977},
title = {Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models},
url = {http://eudml.org/doc/269214},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Victor Przyjalkowski
TI - Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 972
EP - 977
AB - We prove that Hori-Vafa mirror models for smooth Fano complete intersections in weighted projective spaces admit an interpretation as Laurent polynomials.
LA - eng
KW - Hori-Vafa models; Landau-Ginzburg models; Complete intersections; complete intersections; Fano variety
UR - http://eudml.org/doc/269214
ER -

References

top
  1. [1] Dimca A., Singularities and coverings of weighted complete intersections, J. Reine Angew. Math., 1986, 366, 184–193 http://dx.doi.org/10.1515/crll.1986.366.184 Zbl0576.14047
  2. [2] Dolgachev I., Weighted projective varieties, In: Group Actions and Vector Fields, Vancouver, 1981, Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 http://dx.doi.org/10.1007/BFb0101508 
  3. [3] Douai A., Construction de variétés de Frobenius via les polynômes de Laurent: une autre approche, In: Singularités, Inst. Élie Cartan, 18, Université de Nancy, Nancy, 2005, 105–123 
  4. [4] Douai A., Mann E., The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits, preprint available at http://arxiv.org/abs/0909.4063 Zbl1273.14112
  5. [5] Givental A., Equivariant Gromov-Witten invariants, Int. Math. Res. Not., 1996, 613–663 Zbl0881.55006
  6. [6] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 Zbl1044.14018
  7. [7] Ilten N.O., Przyjalkowski V., Toric degenerations of Fano threefolds giving weak Landau-Ginzburg models, preprint available at http://arxiv.org/abs/1102.4664 Zbl1270.14020
  8. [8] Przyjalkowski V.V., Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties, Mat. Sb., 2007, 198(9), 107–122 Zbl1207.14059
  9. [9] Przyjalkowski V., On Landau-Ginzburg models for Fano varieties, Commun. Number Theory Phys., 2008, 1(4), 713–728 Zbl1194.14065
  10. [10] Przyjalkowski V., Weak Landau-Ginzburg models for smooth Fano threefolds, preprint available at http://arxiv.org/abs/0902.4668 Zbl1281.14033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.