Three solutions to discrete anisotropic problems with two parameters

Marek Galewski; Piotr Kowalski

Open Mathematics (2014)

  • Volume: 12, Issue: 10, page 1403-1415
  • ISSN: 2391-5455

Abstract

top
In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.

How to cite

top

Marek Galewski, and Piotr Kowalski. "Three solutions to discrete anisotropic problems with two parameters." Open Mathematics 12.10 (2014): 1403-1415. <http://eudml.org/doc/269215>.

@article{MarekGalewski2014,
abstract = {In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.},
author = {Marek Galewski, Piotr Kowalski},
journal = {Open Mathematics},
keywords = {Three critical point theorem; Critical point theory; Discrete equation; Discrete p(k)-laplacian; Boundary value problem; three critical point theorem; discrete boundary value problem; discrete -Laplacian},
language = {eng},
number = {10},
pages = {1403-1415},
title = {Three solutions to discrete anisotropic problems with two parameters},
url = {http://eudml.org/doc/269215},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Marek Galewski
AU - Piotr Kowalski
TI - Three solutions to discrete anisotropic problems with two parameters
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1403
EP - 1415
AB - In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.
LA - eng
KW - Three critical point theorem; Critical point theory; Discrete equation; Discrete p(k)-laplacian; Boundary value problem; three critical point theorem; discrete boundary value problem; discrete -Laplacian
UR - http://eudml.org/doc/269215
ER -

References

top
  1. [1] R.P. Agarwal, K. Perera, and D. O’Regan. Multiple positive solutions of singular discrete p-laplacian problems via variational methods. Adv. Difference Equ., 2:93–99, 2005. Zbl1098.39001
  2. [2] C. Bereanu, P. Jebelean, and C. Serban. Ground state and mountain pass solutions for discrete p(·)-laplacian. Bound. Value Probl., 2012:104, 2012. http://dx.doi.org/10.1186/1687-2770-2012-104 Zbl1279.39003
  3. [3] C. Bereanu, P. Jebelean, and C. Serban. Periodic and neumann problems for discrete p(·)-laplacian. J. Math. Anal. Appl., 399:75–87, 2013. http://dx.doi.org/10.1016/j.jmaa.2012.09.047 Zbl1270.35243
  4. [4] G. Molica Bisci and G. Bonanno. Three weak solutions for elliptic dirichlet problems. J. Math. Anal. Appl., 382:1–8, 2011. http://dx.doi.org/10.1016/j.jmaa.2011.04.026 Zbl1225.35067
  5. [5] G. Bonanno. A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appl, 270:210–229, 2002. http://dx.doi.org/10.1016/S0022-247X(02)00068-9 Zbl1009.49004
  6. [6] G. Bonanno and A. Chinně. Existence of three solutions for a perturbed two-point boundary value problem. Appl. Math. Lett., 23(7):807–811, 2010. http://dx.doi.org/10.1016/j.aml.2010.03.015 Zbl1203.34019
  7. [7] A. Cabada and A. Iannizzotto. A note on a question of ricceri. Appl. Math. Lett., 25:215–219, 2012. http://dx.doi.org/10.1016/j.aml.2011.08.024 
  8. [8] A. Cabada, A. Iannizzotto, and S. Tersian. Multiple solutions for discrete boundary value problems. J. Math. Anal. Appl., 356(2):418–428, 2009. http://dx.doi.org/10.1016/j.jmaa.2009.02.038 Zbl1169.39008
  9. [9] X. Cai and J. Yu. Existence theorems of periodic solutions for second-order nonlinear difference equations. Adv. Difference Equ., 2008. Zbl1146.39006
  10. [10] Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math., 66(4):1383–1406, 2006. http://dx.doi.org/10.1137/050624522 Zbl1102.49010
  11. [11] X.L. Fan and H. Zhang. Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal. Theory Methods Appl., 2003. Zbl1146.35353
  12. [12] M. Galewski and R. Wieteska. A note on the multiplicity of solutions to anisotropic discrete BVP’s. Appl. Math. Lett., 26:524–529, 2012. http://dx.doi.org/10.1016/j.aml.2012.11.002 Zbl1261.39008
  13. [13] P. Harjulehto, P. Hästö, U. V. Le, and M. Nuortio. Overview of differential equations with non-standard growth. Nonlinear Anal., 72:4551–4574, 2010. http://dx.doi.org/10.1016/j.na.2010.02.033 Zbl1188.35072
  14. [14] B. Kone and S. Ouaro. Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 17:1537–1547, 2011. http://dx.doi.org/10.1080/10236191003657246 Zbl1227.47046
  15. [15] J.Q. Liu and J.B. Su. Remarks on multiple nontrivial solutions for quasi-linear resonant problemes. J. Math. Anal. Appl., 258:209–222, 2001. http://dx.doi.org/10.1006/jmaa.2000.7374 
  16. [16] M. Mihǎilescu, V. Rǎdulescu, and S. Tersian. Eigenvalue problems for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 15(6):557–567, 2009. http://dx.doi.org/10.1080/10236190802214977 Zbl1181.47016
  17. [17] B. Ricceri. A general variational principle and some of its applications. J. Comput. Appl. Math., 113:401–410, 2000. http://dx.doi.org/10.1016/S0377-0427(99)00269-1 Zbl0946.49001
  18. [18] B. Ricceri. On a three critical points theorem. Arch. Math. (Basel), 75:220–226, 2000. http://dx.doi.org/10.1007/s000130050496 Zbl0979.35040
  19. [19] B. Ricceri. A further three critical points theorem. Nonlinear Anal., 2009. Zbl1187.47057
  20. [20] B. Ricceri. A three critical points theorem revisited. Nonlinear Anal., 70:3084–3089, 2009. http://dx.doi.org/10.1016/j.na.2008.04.010 Zbl1214.47079
  21. [21] B. Ricceri. A further refinement of a three critical points theorem. Nonlinear Anal., 74(18):7446–7454, 2011. http://dx.doi.org/10.1016/j.na.2011.07.064 Zbl1228.58009
  22. [22] M. Růžička. Electrorheological fluids: Modelling and mathematical theory. Lecture Notes in Mathematics, 1748, 2000. 
  23. [23] J. Zhang Y. Yang. Existence of solution for some discrete value problems with a parameter. Appl. Math. Comput., 211:293–302, 2009. http://dx.doi.org/10.1016/j.amc.2009.01.040 Zbl1169.39009
  24. [24] G. Zhang. Existence of non-zero solutions for a nonlinear system with a parameter. Nonlinear Anal., 66(6):1400–1416, 2007. http://dx.doi.org/10.1016/j.na.2006.01.024 Zbl1113.65056
  25. [25] G. Zhang and S.S. Cheng. Existence of solutions for a nonlinear system with a parameter. J. Math. Anal. Appl., 314(1):311–319, 2006. http://dx.doi.org/10.1016/j.jmaa.2005.03.098 Zbl1087.39021
  26. [26] V.V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv., 29:33–66, 1987. http://dx.doi.org/10.1070/IM1987v029n01ABEH000958 Zbl0599.49031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.