Three solutions to discrete anisotropic problems with two parameters
Marek Galewski; Piotr Kowalski
Open Mathematics (2014)
- Volume: 12, Issue: 10, page 1403-1415
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarek Galewski, and Piotr Kowalski. "Three solutions to discrete anisotropic problems with two parameters." Open Mathematics 12.10 (2014): 1403-1415. <http://eudml.org/doc/269215>.
@article{MarekGalewski2014,
abstract = {In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.},
author = {Marek Galewski, Piotr Kowalski},
journal = {Open Mathematics},
keywords = {Three critical point theorem; Critical point theory; Discrete equation; Discrete p(k)-laplacian; Boundary value problem; three critical point theorem; discrete boundary value problem; discrete -Laplacian},
language = {eng},
number = {10},
pages = {1403-1415},
title = {Three solutions to discrete anisotropic problems with two parameters},
url = {http://eudml.org/doc/269215},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Marek Galewski
AU - Piotr Kowalski
TI - Three solutions to discrete anisotropic problems with two parameters
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1403
EP - 1415
AB - In this note we derive a type of a three critical point theorem which we further apply to investigate the multiplicity of solutions to discrete anisotropic problems with two parameters.
LA - eng
KW - Three critical point theorem; Critical point theory; Discrete equation; Discrete p(k)-laplacian; Boundary value problem; three critical point theorem; discrete boundary value problem; discrete -Laplacian
UR - http://eudml.org/doc/269215
ER -
References
top- [1] R.P. Agarwal, K. Perera, and D. O’Regan. Multiple positive solutions of singular discrete p-laplacian problems via variational methods. Adv. Difference Equ., 2:93–99, 2005. Zbl1098.39001
- [2] C. Bereanu, P. Jebelean, and C. Serban. Ground state and mountain pass solutions for discrete p(·)-laplacian. Bound. Value Probl., 2012:104, 2012. http://dx.doi.org/10.1186/1687-2770-2012-104 Zbl1279.39003
- [3] C. Bereanu, P. Jebelean, and C. Serban. Periodic and neumann problems for discrete p(·)-laplacian. J. Math. Anal. Appl., 399:75–87, 2013. http://dx.doi.org/10.1016/j.jmaa.2012.09.047 Zbl1270.35243
- [4] G. Molica Bisci and G. Bonanno. Three weak solutions for elliptic dirichlet problems. J. Math. Anal. Appl., 382:1–8, 2011. http://dx.doi.org/10.1016/j.jmaa.2011.04.026 Zbl1225.35067
- [5] G. Bonanno. A minimax inequality and its applications to ordinary differential equations. J. Math. Anal. Appl, 270:210–229, 2002. http://dx.doi.org/10.1016/S0022-247X(02)00068-9 Zbl1009.49004
- [6] G. Bonanno and A. Chinně. Existence of three solutions for a perturbed two-point boundary value problem. Appl. Math. Lett., 23(7):807–811, 2010. http://dx.doi.org/10.1016/j.aml.2010.03.015 Zbl1203.34019
- [7] A. Cabada and A. Iannizzotto. A note on a question of ricceri. Appl. Math. Lett., 25:215–219, 2012. http://dx.doi.org/10.1016/j.aml.2011.08.024
- [8] A. Cabada, A. Iannizzotto, and S. Tersian. Multiple solutions for discrete boundary value problems. J. Math. Anal. Appl., 356(2):418–428, 2009. http://dx.doi.org/10.1016/j.jmaa.2009.02.038 Zbl1169.39008
- [9] X. Cai and J. Yu. Existence theorems of periodic solutions for second-order nonlinear difference equations. Adv. Difference Equ., 2008. Zbl1146.39006
- [10] Y. Chen, S. Levine, and M. Rao. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math., 66(4):1383–1406, 2006. http://dx.doi.org/10.1137/050624522 Zbl1102.49010
- [11] X.L. Fan and H. Zhang. Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal. Theory Methods Appl., 2003. Zbl1146.35353
- [12] M. Galewski and R. Wieteska. A note on the multiplicity of solutions to anisotropic discrete BVP’s. Appl. Math. Lett., 26:524–529, 2012. http://dx.doi.org/10.1016/j.aml.2012.11.002 Zbl1261.39008
- [13] P. Harjulehto, P. Hästö, U. V. Le, and M. Nuortio. Overview of differential equations with non-standard growth. Nonlinear Anal., 72:4551–4574, 2010. http://dx.doi.org/10.1016/j.na.2010.02.033 Zbl1188.35072
- [14] B. Kone and S. Ouaro. Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 17:1537–1547, 2011. http://dx.doi.org/10.1080/10236191003657246 Zbl1227.47046
- [15] J.Q. Liu and J.B. Su. Remarks on multiple nontrivial solutions for quasi-linear resonant problemes. J. Math. Anal. Appl., 258:209–222, 2001. http://dx.doi.org/10.1006/jmaa.2000.7374
- [16] M. Mihǎilescu, V. Rǎdulescu, and S. Tersian. Eigenvalue problems for anisotropic discrete boundary value problems. J. Difference Equ. Appl., 15(6):557–567, 2009. http://dx.doi.org/10.1080/10236190802214977 Zbl1181.47016
- [17] B. Ricceri. A general variational principle and some of its applications. J. Comput. Appl. Math., 113:401–410, 2000. http://dx.doi.org/10.1016/S0377-0427(99)00269-1 Zbl0946.49001
- [18] B. Ricceri. On a three critical points theorem. Arch. Math. (Basel), 75:220–226, 2000. http://dx.doi.org/10.1007/s000130050496 Zbl0979.35040
- [19] B. Ricceri. A further three critical points theorem. Nonlinear Anal., 2009. Zbl1187.47057
- [20] B. Ricceri. A three critical points theorem revisited. Nonlinear Anal., 70:3084–3089, 2009. http://dx.doi.org/10.1016/j.na.2008.04.010 Zbl1214.47079
- [21] B. Ricceri. A further refinement of a three critical points theorem. Nonlinear Anal., 74(18):7446–7454, 2011. http://dx.doi.org/10.1016/j.na.2011.07.064 Zbl1228.58009
- [22] M. Růžička. Electrorheological fluids: Modelling and mathematical theory. Lecture Notes in Mathematics, 1748, 2000.
- [23] J. Zhang Y. Yang. Existence of solution for some discrete value problems with a parameter. Appl. Math. Comput., 211:293–302, 2009. http://dx.doi.org/10.1016/j.amc.2009.01.040 Zbl1169.39009
- [24] G. Zhang. Existence of non-zero solutions for a nonlinear system with a parameter. Nonlinear Anal., 66(6):1400–1416, 2007. http://dx.doi.org/10.1016/j.na.2006.01.024 Zbl1113.65056
- [25] G. Zhang and S.S. Cheng. Existence of solutions for a nonlinear system with a parameter. J. Math. Anal. Appl., 314(1):311–319, 2006. http://dx.doi.org/10.1016/j.jmaa.2005.03.098 Zbl1087.39021
- [26] V.V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv., 29:33–66, 1987. http://dx.doi.org/10.1070/IM1987v029n01ABEH000958 Zbl0599.49031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.