On dimension of the Schur multiplier of nilpotent Lie algebras

Peyman Niroomand

Open Mathematics (2011)

  • Volume: 9, Issue: 1, page 57-64
  • ISSN: 2391-5455

Abstract

top
Let L be an n-dimensional non-abelian nilpotent Lie algebra and s ( L ) = 1 2 ( n - 1 ) ( n - 2 ) + 1 - dim M ( L ) where M(L) is the Schur multiplier of L. In [Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press)] it has been shown that s(L) ≥ 0 and the structure of all nilpotent Lie algebras has been determined when s(L) = 0. In the present paper, we will characterize all finite dimensional nilpotent Lie algebras with s(L) = 1; 2.

How to cite

top

Peyman Niroomand. "On dimension of the Schur multiplier of nilpotent Lie algebras." Open Mathematics 9.1 (2011): 57-64. <http://eudml.org/doc/269221>.

@article{PeymanNiroomand2011,
abstract = {Let L be an n-dimensional non-abelian nilpotent Lie algebra and \[ s(L) = \frac\{1\}\{2\}(n - 1)(n - 2) + 1 - \dim M(L) \] where M(L) is the Schur multiplier of L. In [Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press)] it has been shown that s(L) ≥ 0 and the structure of all nilpotent Lie algebras has been determined when s(L) = 0. In the present paper, we will characterize all finite dimensional nilpotent Lie algebras with s(L) = 1; 2.},
author = {Peyman Niroomand},
journal = {Open Mathematics},
keywords = {Schur multiplier; Nilpotent Lie algebras; nilpotent Lie algebra},
language = {eng},
number = {1},
pages = {57-64},
title = {On dimension of the Schur multiplier of nilpotent Lie algebras},
url = {http://eudml.org/doc/269221},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Peyman Niroomand
TI - On dimension of the Schur multiplier of nilpotent Lie algebras
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 57
EP - 64
AB - Let L be an n-dimensional non-abelian nilpotent Lie algebra and \[ s(L) = \frac{1}{2}(n - 1)(n - 2) + 1 - \dim M(L) \] where M(L) is the Schur multiplier of L. In [Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press)] it has been shown that s(L) ≥ 0 and the structure of all nilpotent Lie algebras has been determined when s(L) = 0. In the present paper, we will characterize all finite dimensional nilpotent Lie algebras with s(L) = 1; 2.
LA - eng
KW - Schur multiplier; Nilpotent Lie algebras; nilpotent Lie algebra
UR - http://eudml.org/doc/269221
ER -

References

top
  1. [1] Batten P., Multipliers and Covers of Lie Algebras, PhD thesis, North Carolina State University, 1993 
  2. [2] Batten P., Moneyhun K., Stitzinger E., On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra, 1996, 24(14), 4319–4330 http://dx.doi.org/10.1080/00927879608825817 Zbl0893.17008
  3. [3] Batten P., Stitzinger E., On covers of Lie algebras, Comm. Algebra, 1996, 24(14), 4301–4317 http://dx.doi.org/10.1080/00927879608825816 Zbl0893.17004
  4. [4] Berkovich Ya.G., On the order of the commutator subgroups and the Schur multiplier of a finite p-group, J. Algebra, 1991, 144(2), 269–272 http://dx.doi.org/10.1016/0021-8693(91)90106-I 
  5. [5] Bosko L.R., On Schur multipliers of Lie algebras and groups of maximal class, Internat. J. Algebra Comput., 2010, 20(6), 807–821 http://dx.doi.org/10.1142/S0218196710005881 Zbl1223.17015
  6. [6] Ellis G., On the Schur multiplier of p-groups, Comm. Algebra, 1999, 27(9), 4173–4177 http://dx.doi.org/10.1080/00927879908826689 Zbl0947.20008
  7. [7] Gaschütz W., Neubüser J., Yen T., Über den Multiplikator von p-Gruppen, Math. Z., 1967, 100(2), 93–96 http://dx.doi.org/10.1007/BF01110785 Zbl0203.02504
  8. [8] Green J.A., On the number of automorphisms of a finite group, Proc. Roy. Soc. London Ser. A., 1956, 237, 574–581 http://dx.doi.org/10.1098/rspa.1956.0198 
  9. [9] Hardy P., On characterizing nilpotent Lie algebras by their multipliers III, Comm. Algebra, 2005, 33(11), 4205–4210 http://dx.doi.org/10.1080/00927870500261512 Zbl1099.17007
  10. [10] Hardy P., Stitzinger E., On characterizing nilpotent Lie algebras by their multipliers t(L) = 3; 4; 5; 6, Comm. Algebra, 1998, 26(11), 3527–3539 http://dx.doi.org/10.1080/00927879808826357 Zbl0916.17008
  11. [11] Jones M.R., Multiplicators of p-groups, Math. Z., 1972, 127(2), 165–166 http://dx.doi.org/10.1007/BF01112608 Zbl0226.20016
  12. [12] Karpilovsky G., The Schur Multiplier, London Math. Soc. Monogr. (N.S.), 2, The Clarendon Press, Oxford University Press, New York, 1987 Zbl0619.20001
  13. [13] Moneyhun K., Isoclinisms in Lie algebras, Algebras Groups Geom., 1994, 11(1), 9–22 Zbl0801.17005
  14. [14] Niroomand P., On the order of Schur multiplier of non-abelian p-groups, J. Algebra, 2009, 322(12), 4479–4482 http://dx.doi.org/10.1016/j.jalgebra.2009.09.030 Zbl1186.20013
  15. [15] Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press) Zbl1250.17019
  16. [16] Salemkar A.R., Alamian V., Mohammadzadeh H., Some properties of the Schur multiplier and covers of Lie algebras, Comm. Algebra, 2008, 36(2), 697–707 http://dx.doi.org/10.1080/00927870701724193 Zbl1132.17003
  17. [17] Yankosky B., On the multiplier of a Lie algebra, J. Lie Theory, 2003, 13(1), 1–6 Zbl1010.17005
  18. [18] Zhou X., On the order of Schur multipliers of finite p-groups, Comm. Algebra, 1994, 22(1), 1–8 http://dx.doi.org/10.1080/00927879408824827 Zbl0832.20038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.