Generalized John disks

Chang-Yu Guo; Pekka Koskela

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 349-361
  • ISSN: 2391-5455

Abstract

top
We establish the basic properties of the class of generalized simply connected John domains.

How to cite

top

Chang-Yu Guo, and Pekka Koskela. "Generalized John disks." Open Mathematics 12.2 (2014): 349-361. <http://eudml.org/doc/269241>.

@article{Chang2014,
abstract = {We establish the basic properties of the class of generalized simply connected John domains.},
author = {Chang-Yu Guo, Pekka Koskela},
journal = {Open Mathematics},
keywords = {Conformal mapping; Hyperbolic geodesic; John domain; Inner uniform domain; conformal mapping; hyperbolic geodesic; inner uniform domain},
language = {eng},
number = {2},
pages = {349-361},
title = {Generalized John disks},
url = {http://eudml.org/doc/269241},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Chang-Yu Guo
AU - Pekka Koskela
TI - Generalized John disks
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 349
EP - 361
AB - We establish the basic properties of the class of generalized simply connected John domains.
LA - eng
KW - Conformal mapping; Hyperbolic geodesic; John domain; Inner uniform domain; conformal mapping; hyperbolic geodesic; inner uniform domain
UR - http://eudml.org/doc/269241
ER -

References

top
  1. [1] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 Zbl1182.30001
  2. [2] Balogh Z., Volberg A., Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat., 1996, 34(1), 21–49 http://dx.doi.org/10.1007/BF02559505 Zbl0855.30022
  3. [3] Buckley S., Koskela P., Sobolev-Poincaré implies John, Math. Res. Lett., 1995, 2(5), 577–593 http://dx.doi.org/10.4310/MRL.1995.v2.n5.a5 Zbl0847.30012
  4. [4] Gehring F.W., Hayman W.K., An inequality in the theory of conformal mapping, J. Math. Pures Appl., 1962, 41, 353–361 Zbl0105.28002
  5. [5] Gehring F.W., Palka B.P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30, 172–199 http://dx.doi.org/10.1007/BF02786713 Zbl0349.30019
  6. [6] Guo C.Y., Generalized quasidisks and conformality II, preprint available at http://arxiv.org/abs/1311.1967 
  7. [7] Guo C.Y., Koskela P., Takkinen J., Generalized quasidisks and conformality, Publ. Mat., 2014, 58(1) (in press) Zbl1286.30021
  8. [8] Hakobyan H., Herron D.A., Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math., 2008, 33(1), 205–230 
  9. [9] John F., Rotation and strain, Comm. Pure Appl. Math., 1961, 14(3), 391–413 http://dx.doi.org/10.1002/cpa.3160140316 Zbl0102.17404
  10. [10] Koskela P., Lectures on quasiconformal and quasisymmetric mappings, Jyväskylä Lectures in Mathematics, 1, preprint available at http://users.jyu.fi/_pkoskela/quasifinal.pdf 
  11. [11] Martio O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl., 1988, 33(1–2), 107–112 Zbl0652.30012
  12. [12] Martio O., Sarvas J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 1979, 4(2), 383–401 Zbl0406.30013
  13. [13] Näkki R., Väisälä J., John disks, Exposition. Math., 1991, 9(1), 3–43 
  14. [14] Nieminen T., Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 143–172 Zbl1099.30009
  15. [15] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-662-02770-7 
  16. [16] Reshetnyak Yu.G., Integral representations of differentiable functions in domains with nonsmooth boundary, Siberian Math. J., 1980, 21(6), 833–839 http://dx.doi.org/10.1007/BF00968470 Zbl0461.35017
  17. [17] Smith W., Stegenga D.A., Hölder domains and Poincaré domains, Trans. Amer. Math. Soc., 1990, 319(1), 67–100 Zbl0707.46028
  18. [18] Takkinen J., Mappings of finite distortion: formation of cusps II, Conform. Geom. Dyn., 2007, 11, 207–218 http://dx.doi.org/10.1090/S1088-4173-07-00170-1 Zbl1133.30317

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.