Generalized John disks
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 349-361
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topChang-Yu Guo, and Pekka Koskela. "Generalized John disks." Open Mathematics 12.2 (2014): 349-361. <http://eudml.org/doc/269241>.
@article{Chang2014,
abstract = {We establish the basic properties of the class of generalized simply connected John domains.},
author = {Chang-Yu Guo, Pekka Koskela},
journal = {Open Mathematics},
keywords = {Conformal mapping; Hyperbolic geodesic; John domain; Inner uniform domain; conformal mapping; hyperbolic geodesic; inner uniform domain},
language = {eng},
number = {2},
pages = {349-361},
title = {Generalized John disks},
url = {http://eudml.org/doc/269241},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Chang-Yu Guo
AU - Pekka Koskela
TI - Generalized John disks
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 349
EP - 361
AB - We establish the basic properties of the class of generalized simply connected John domains.
LA - eng
KW - Conformal mapping; Hyperbolic geodesic; John domain; Inner uniform domain; conformal mapping; hyperbolic geodesic; inner uniform domain
UR - http://eudml.org/doc/269241
ER -
References
top- [1] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 Zbl1182.30001
- [2] Balogh Z., Volberg A., Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat., 1996, 34(1), 21–49 http://dx.doi.org/10.1007/BF02559505 Zbl0855.30022
- [3] Buckley S., Koskela P., Sobolev-Poincaré implies John, Math. Res. Lett., 1995, 2(5), 577–593 http://dx.doi.org/10.4310/MRL.1995.v2.n5.a5 Zbl0847.30012
- [4] Gehring F.W., Hayman W.K., An inequality in the theory of conformal mapping, J. Math. Pures Appl., 1962, 41, 353–361 Zbl0105.28002
- [5] Gehring F.W., Palka B.P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30, 172–199 http://dx.doi.org/10.1007/BF02786713 Zbl0349.30019
- [6] Guo C.Y., Generalized quasidisks and conformality II, preprint available at http://arxiv.org/abs/1311.1967
- [7] Guo C.Y., Koskela P., Takkinen J., Generalized quasidisks and conformality, Publ. Mat., 2014, 58(1) (in press) Zbl1286.30021
- [8] Hakobyan H., Herron D.A., Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math., 2008, 33(1), 205–230
- [9] John F., Rotation and strain, Comm. Pure Appl. Math., 1961, 14(3), 391–413 http://dx.doi.org/10.1002/cpa.3160140316 Zbl0102.17404
- [10] Koskela P., Lectures on quasiconformal and quasisymmetric mappings, Jyväskylä Lectures in Mathematics, 1, preprint available at http://users.jyu.fi/_pkoskela/quasifinal.pdf
- [11] Martio O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl., 1988, 33(1–2), 107–112 Zbl0652.30012
- [12] Martio O., Sarvas J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 1979, 4(2), 383–401 Zbl0406.30013
- [13] Näkki R., Väisälä J., John disks, Exposition. Math., 1991, 9(1), 3–43
- [14] Nieminen T., Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 143–172 Zbl1099.30009
- [15] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-662-02770-7
- [16] Reshetnyak Yu.G., Integral representations of differentiable functions in domains with nonsmooth boundary, Siberian Math. J., 1980, 21(6), 833–839 http://dx.doi.org/10.1007/BF00968470 Zbl0461.35017
- [17] Smith W., Stegenga D.A., Hölder domains and Poincaré domains, Trans. Amer. Math. Soc., 1990, 319(1), 67–100 Zbl0707.46028
- [18] Takkinen J., Mappings of finite distortion: formation of cusps II, Conform. Geom. Dyn., 2007, 11, 207–218 http://dx.doi.org/10.1090/S1088-4173-07-00170-1 Zbl1133.30317
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.