Stable outer conjugacy and strong Morita equivalence of group actions on pro-C *-algebras
Open Mathematics (2009)
- Volume: 7, Issue: 1, page 73-83
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaria Joiţa. "Stable outer conjugacy and strong Morita equivalence of group actions on pro-C *-algebras." Open Mathematics 7.1 (2009): 73-83. <http://eudml.org/doc/269248>.
@article{MariaJoiţa2009,
abstract = {We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math. Soc. 49(1984), 289–306].},
author = {Maria Joiţa},
journal = {Open Mathematics},
keywords = {Group actions; Strong Morita equivalence; Pro-C
*-algebras; Hilbert modules; group actions; strong Morita equivalence; pro--algebras},
language = {eng},
number = {1},
pages = {73-83},
title = {Stable outer conjugacy and strong Morita equivalence of group actions on pro-C *-algebras},
url = {http://eudml.org/doc/269248},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Maria Joiţa
TI - Stable outer conjugacy and strong Morita equivalence of group actions on pro-C *-algebras
JO - Open Mathematics
PY - 2009
VL - 7
IS - 1
SP - 73
EP - 83
AB - We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math. Soc. 49(1984), 289–306].
LA - eng
KW - Group actions; Strong Morita equivalence; Pro-C
*-algebras; Hilbert modules; group actions; strong Morita equivalence; pro--algebras
UR - http://eudml.org/doc/269248
ER -
References
top- [1] Apostol C., b *-algebras and their representation, J. London Math. Soc. (2), 1971, 3, 30–38 http://dx.doi.org/10.1112/jlms/s2-3.1.30[Crossref]
- [2] Bakić D., Extensions of Hilbert C *-modules, Houston J. Math., 2004, 30, 537–558 Zbl1069.46032
- [3] Combes F., Crossed products and Morita equivalence, Proc. London Math. Soc., 1984, 49, 289–306 http://dx.doi.org/10.1112/plms/s3-49.2.289[Crossref] Zbl0521.46058
- [4] Fragoulopoulou M., Topological algebras with involution, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005
- [5] Inoue A., Locally C *-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 1971, 25, 197–235 http://dx.doi.org/10.2206/kyushumfs.25.197[Crossref]
- [6] Joiţa M., Tensor products of Hilbert modules over locally C *-algebras, Czech. Math. J., 2004, 54(129), 727–737 http://dx.doi.org/10.1007/s10587-004-6421-9[Crossref] Zbl1080.46523
- [7] Joiţa M., Morita equivalence for locally C *-algebras, Bull. London Math. Soc., 2004, 36, 802–810 http://dx.doi.org/10.1112/S0024609304003522[Crossref]
- [8] Joiţa M., On the linking algebra of a Hilbert module and strong Morita equivalence of locally C *-algebras, Surv. Math. Appl., 2006, 1, 23–32 Zbl1124.46042
- [9] Joiţa M., A note on Morita equivalence of group actions on pro-C *-algebras, Rocky Mountain J. Math., to appear Zbl1228.46054
- [10] Joiţa M., Crossed products of locally C *-algebras and strong Morita equivalence, Mediterr. J. Math., 2008, 5, 467–492 http://dx.doi.org/10.1007/s00009-008-0162-1[WoS][Crossref] Zbl1182.46044
- [11] Joiţa M., Hilbert modules over locally C *-algebras, University of Bucharest Press, 2006
- [12] Joiţa M., Countably generated Hilbert modules and stable isomorphisms of locally C *-algebras, In: Douglas R.G., Esterle J., Gaspar D., Timotin D., Vasilescu F.-H. (Eds.), Theta Ser. Adv. Math. Theta, Bucharest, 2008, 9, 89–99 Zbl1199.46132
- [13] Joiţa M., A note on full countably generated Hilbert modules, preprint [WoS]
- [14] Lance C.E., Hilbert C *-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge, 1995
- [15] Lassner G., Über Realisierungen gewisser *-Algebren, Math. Nachr., 1972, 52, 161–166 (in German) http://dx.doi.org/10.1002/mana.19720520113[Crossref]
- [16] Pedersen G.K., C *-algebras and their automorphism groups, London Mathematical Society Monographs 14, Academic Press, London-New York, 1979 Zbl0416.46043
- [17] Phillips N.C., Inverse limits of C *-algebras, J. Operator Theory, 1988, 19, 159–195 Zbl0662.46063
- [18] Phillips N.C., Representable K-theory for σ-C *-algebras, K-Theory, 1989, 3, 441–478 http://dx.doi.org/10.1007/BF00534137[Crossref]
- [19] Raeburn I., Thompson S.J., Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules, Proc. Amer. Math. Soc., 2003, 131, 1557–1564 http://dx.doi.org/10.1090/S0002-9939-02-06787-4[Crossref] Zbl1015.46034
- [20] Schmüdgen K., Über LMC-Algebren, Math. Nachr., 1975, 68, 167–182 (in German) http://dx.doi.org/10.1002/mana.19750680113[Crossref]
- [21] Zhuraev Yu.I., Sharipov F., Hilbert modules over locally C *-algebras, preprint available at arXiv:math.OA/0011053
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.