The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme
Mikhail Borovoi; Cristian González-Avilés
Open Mathematics (2014)
- Volume: 12, Issue: 4, page 545-558
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMikhail Borovoi, and Cristian González-Avilés. "The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme." Open Mathematics 12.4 (2014): 545-558. <http://eudml.org/doc/269255>.
@article{MikhailBorovoi2014,
abstract = {We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.},
author = {Mikhail Borovoi, Cristian González-Avilés},
journal = {Open Mathematics},
keywords = {Reductive group scheme; Algebraic fundamental group; reductive group scheme; algebraic fundamental group},
language = {eng},
number = {4},
pages = {545-558},
title = {The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme},
url = {http://eudml.org/doc/269255},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Mikhail Borovoi
AU - Cristian González-Avilés
TI - The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme
JO - Open Mathematics
PY - 2014
VL - 12
IS - 4
SP - 545
EP - 558
AB - We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.
LA - eng
KW - Reductive group scheme; Algebraic fundamental group; reductive group scheme; algebraic fundamental group
UR - http://eudml.org/doc/269255
ER -
References
top- [1] Borovoi M., Abelian Galois Cohomology of Reductive Groups, Mem. Amer. Math. Soc., 132(626), American Mathematical Society, Providence, 1998 Zbl0918.20037
- [2] Borovoi M., Demarche C., Le groupe fondamental d’un espace homogène d’un groupe algébrique linéaire, preprint available at http://arxiv.org/abs/1301.1046
- [3] Borovoi M., Kunyavskiĭ B., Gille P., Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra, 2004, 276(1), 292–339 http://dx.doi.org/10.1016/j.jalgebra.2003.10.024 Zbl1057.11023
- [4] Colliot-Thélène J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., 2008, 618, 77–133
- [5] Conrad B., Reductive group schemes (SGA3 Summer School, 2011), available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf
- [6] Demazure M., Grothendieck A. (Eds.), Schémas en Groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962–64 (SGA 3), re-edition available at http://www.math.jussieu.fr/~polo/SGA3; volumes 1 and 3 have been published: Documents Mathématiques, 7–8, Société Mathématique de France, Paris, 2011
- [7] Gelfand S.I., Manin Yu.I., Methods of Homological Algebra, 2nd ed., Springer Monogr. Math., Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-662-12492-5
- [8] González-Avilés C.D., Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255 http://dx.doi.org/10.1016/j.jalgebra.2012.07.031 Zbl1292.14016
- [9] González-Avilés C.D., Abelian class groups of reductive group schemes, Israel J. Math., 2013, 196(1), 175–214 http://dx.doi.org/10.1007/s11856-012-0147-4 Zbl1278.14064
- [10] González-Avilés C.D., Flasque resolutions of reductive group schemes, Cent. Eur. J. Math., 2013, 11(7), 1159–1176 http://dx.doi.org/10.2478/s11533-013-0235-7 Zbl1273.14090
- [11] Kottwitz R.E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 1984, 51(3), 611–650 http://dx.doi.org/10.1215/S0012-7094-84-05129-9 Zbl0576.22020
- [12] Merkurjev A.S., K-theory and algebraic groups, In: European Congress of Mathematics, II, Budapest, July 22–26, 1996, Progr. Math., 169, Birkhäuser, Basel, 1998, 43–72 Zbl0906.19001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.