The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme

Mikhail Borovoi; Cristian González-Avilés

Open Mathematics (2014)

  • Volume: 12, Issue: 4, page 545-558
  • ISSN: 2391-5455

Abstract

top
We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.

How to cite

top

Mikhail Borovoi, and Cristian González-Avilés. "The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme." Open Mathematics 12.4 (2014): 545-558. <http://eudml.org/doc/269255>.

@article{MikhailBorovoi2014,
abstract = {We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.},
author = {Mikhail Borovoi, Cristian González-Avilés},
journal = {Open Mathematics},
keywords = {Reductive group scheme; Algebraic fundamental group; reductive group scheme; algebraic fundamental group},
language = {eng},
number = {4},
pages = {545-558},
title = {The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme},
url = {http://eudml.org/doc/269255},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Mikhail Borovoi
AU - Cristian González-Avilés
TI - The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme
JO - Open Mathematics
PY - 2014
VL - 12
IS - 4
SP - 545
EP - 558
AB - We define the algebraic fundamental group π 1(G) of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor G↦ π1(G) is exact.
LA - eng
KW - Reductive group scheme; Algebraic fundamental group; reductive group scheme; algebraic fundamental group
UR - http://eudml.org/doc/269255
ER -

References

top
  1. [1] Borovoi M., Abelian Galois Cohomology of Reductive Groups, Mem. Amer. Math. Soc., 132(626), American Mathematical Society, Providence, 1998 Zbl0918.20037
  2. [2] Borovoi M., Demarche C., Le groupe fondamental d’un espace homogène d’un groupe algébrique linéaire, preprint available at http://arxiv.org/abs/1301.1046 
  3. [3] Borovoi M., Kunyavskiĭ B., Gille P., Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra, 2004, 276(1), 292–339 http://dx.doi.org/10.1016/j.jalgebra.2003.10.024 Zbl1057.11023
  4. [4] Colliot-Thélène J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math., 2008, 618, 77–133 
  5. [5] Conrad B., Reductive group schemes (SGA3 Summer School, 2011), available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf 
  6. [6] Demazure M., Grothendieck A. (Eds.), Schémas en Groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962–64 (SGA 3), re-edition available at http://www.math.jussieu.fr/~polo/SGA3; volumes 1 and 3 have been published: Documents Mathématiques, 7–8, Société Mathématique de France, Paris, 2011 
  7. [7] Gelfand S.I., Manin Yu.I., Methods of Homological Algebra, 2nd ed., Springer Monogr. Math., Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-662-12492-5 
  8. [8] González-Avilés C.D., Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255 http://dx.doi.org/10.1016/j.jalgebra.2012.07.031 Zbl1292.14016
  9. [9] González-Avilés C.D., Abelian class groups of reductive group schemes, Israel J. Math., 2013, 196(1), 175–214 http://dx.doi.org/10.1007/s11856-012-0147-4 Zbl1278.14064
  10. [10] González-Avilés C.D., Flasque resolutions of reductive group schemes, Cent. Eur. J. Math., 2013, 11(7), 1159–1176 http://dx.doi.org/10.2478/s11533-013-0235-7 Zbl1273.14090
  11. [11] Kottwitz R.E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 1984, 51(3), 611–650 http://dx.doi.org/10.1215/S0012-7094-84-05129-9 Zbl0576.22020
  12. [12] Merkurjev A.S., K-theory and algebraic groups, In: European Congress of Mathematics, II, Budapest, July 22–26, 1996, Progr. Math., 169, Birkhäuser, Basel, 1998, 43–72 Zbl0906.19001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.