Codes and designs from triangular graphs and their line graphs
Washiela Fish; Khumbo Kumwenda; Eric Mwambene
Open Mathematics (2011)
- Volume: 9, Issue: 6, page 1411-1423
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topWashiela Fish, Khumbo Kumwenda, and Eric Mwambene. "Codes and designs from triangular graphs and their line graphs." Open Mathematics 9.6 (2011): 1411-1423. <http://eudml.org/doc/269265>.
@article{WashielaFish2011,
abstract = {For any prime p, we consider p-ary linear codes obtained from the span over $\mathbb \{F\}_p $ p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.},
author = {Washiela Fish, Khumbo Kumwenda, Eric Mwambene},
journal = {Open Mathematics},
keywords = {Automorphism group; Incidence design; Incidence matrix; Line graph; Linear code; Permutation decoding; Triangular graph},
language = {eng},
number = {6},
pages = {1411-1423},
title = {Codes and designs from triangular graphs and their line graphs},
url = {http://eudml.org/doc/269265},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Washiela Fish
AU - Khumbo Kumwenda
AU - Eric Mwambene
TI - Codes and designs from triangular graphs and their line graphs
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1411
EP - 1423
AB - For any prime p, we consider p-ary linear codes obtained from the span over $\mathbb {F}_p $ p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.
LA - eng
KW - Automorphism group; Incidence design; Incidence matrix; Line graph; Linear code; Permutation decoding; Triangular graph
UR - http://eudml.org/doc/269265
ER -
References
top- [1] Andrásfai B., Graph Theory: Flows, Matrices, Adam Hilger, Bristol, 1991
- [2] Assmus E.F. Jr., Key J.D., Designs and their Codes, Cambridge Tracts in Math., 103, Cambridge University Press, Cambridge, 1992 Zbl0762.05001
- [3] Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, J. Symbolic Comput., 1997, 24(3–4), 235–265 http://dx.doi.org/10.1006/jsco.1996.0125 Zbl0898.68039
- [4] Fish W., Key J.D., Mwambene E., Codes from incidence matrices and line graphs of Hamming graphs, Discrete Math., 2011, 310(13–14), 1884–1897 Zbl1223.05165
- [5] Fish W., Key J.D., Mwambene E., Codes from the incidence matrices of graphs on 3-sets, Discrete Math., 2011, 311(6), 1823–1840 http://dx.doi.org/10.1016/j.disc.2011.04.029 Zbl1223.05173
- [6] Frucht R., On the groups of repeated graphs, Bull. Amer. Math. Soc., 1949, 55(4), 418–420 http://dx.doi.org/10.1090/S0002-9904-1949-09230-3 Zbl0034.25801
- [7] Gordon D.M., Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 1982, 28(3), 541–543 http://dx.doi.org/10.1109/TIT.1982.1056504 Zbl0479.94021
- [8] Grassl M., Bounds on the minimum distance of linear codes and quantum codes, available at http://www.codetables.de
- [9] Haemers W.H., Peeters R., van Rijckevorsel J.M., Binary codes of strongly regular graphs, Des. Codes Cryptogr., 1999, 17, 187–209 http://dx.doi.org/10.1023/A:1026479210284 Zbl0938.05062
- [10] Huffman W.C., Codes and groups, In: Handbook of Coding Theory, Vol. II. North-Holland, Amsterdam, 1998, 1345–1440 Zbl0926.94039
- [11] Key J.D., Fish W., Mwambene E., Codes from incidence matrices and line graphs of Hamming graphs H k (n, 2) for k ≥ 2, Adv. Math. Commun., 2011, 5(2), 373–394 http://dx.doi.org/10.3934/amc.2011.5.373 Zbl1223.05165
- [12] Key J.D., McDonough T.P., Mavron V.C., Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 2006, 12(2), 232–247 http://dx.doi.org/10.1016/j.ffa.2005.05.007 Zbl1089.94044
- [13] Key J.D., Moori J., Rodrigues B.G., Permutation decoding for the binary codes from triangular graphs, European J. Combin., 2004, 25(1), 113–123 http://dx.doi.org/10.1016/j.ejc.2003.08.001 Zbl1049.94024
- [14] Key J.D., Moori J., Rodrigues B.G., Codes associated with triangular graphs and permutation decoding, Int. J. Inf. Coding Theory, 2010, 1(3), 334–349 http://dx.doi.org/10.1504/IJICOT.2010.032547 Zbl1204.94113
- [15] Kumwenda K., Mwambene E., Codes from graphs related to categorical products of triangular graphs and K n, In: IEEE Information Theory Workshop, Dublin, 30 August–3 September 2010, DOI: 10.1109/CIG.2010.5592662
- [16] Little C.H.C., Grant D.D., Holton D.A., On defect-d matchings in graphs, Discrete Math., 1975, 13, 41–54 http://dx.doi.org/10.1016/0012-365X(75)90085-0 Zbl0304.05120
- [17] MacWilliams F.J., Permutation decoding of systematic codes, Bell System Tech. J., 1964, 43, 485–505 Zbl0116.35304
- [18] MacWilliams F.J., Sloane N.J.A., The Theory of Error-Correcting Codes, North-Holland Math. Library, 16, North-Holland, Amsterdam-New York-Oxford, 1977
- [19] Rodrigues B.G., Codes of Designs and Graphs from Finite Simple Groups, Ph.D. thesis, University of Natal, Pietermaritzburg, 2003
- [20] Tonchev V.D., Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monogr. Surveys Pure Appl. Math., 40, Longman Scientific and Technical, Harlow, 1988
- [21] Whitney H., Congruent graphs and the connectivity of graphs, Amer. J. Math., 1932, 54(1), 150–168 http://dx.doi.org/10.2307/2371086 Zbl58.0609.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.