Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth

Hui Zhang; Junxiang Xu; Fubao Zhang; Miao Du

Open Mathematics (2014)

  • Volume: 12, Issue: 10, page 1484-1499
  • ISSN: 2391-5455

Abstract

top
For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.

How to cite

top

Hui Zhang, et al. "Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth." Open Mathematics 12.10 (2014): 1484-1499. <http://eudml.org/doc/269276>.

@article{HuiZhang2014,
abstract = {For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.},
author = {Hui Zhang, Junxiang Xu, Fubao Zhang, Miao Du},
journal = {Open Mathematics},
keywords = {Schrödinger-Poisson system; Variational method; Nehari manifold; Critical growth; Ground state; variational method; critical growth; ground state},
language = {eng},
number = {10},
pages = {1484-1499},
title = {Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth},
url = {http://eudml.org/doc/269276},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Hui Zhang
AU - Junxiang Xu
AU - Fubao Zhang
AU - Miao Du
TI - Ground states for asymptotically periodic Schrödinger-Poisson systems with critical growth
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1484
EP - 1499
AB - For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.
LA - eng
KW - Schrödinger-Poisson system; Variational method; Nehari manifold; Critical growth; Ground state; variational method; critical growth; ground state
UR - http://eudml.org/doc/269276
ER -

References

top
  1. [1] Alves Claudianor O., Souto Marco A.S., Soares Sérgio H.M., Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377(2), 584–592 http://dx.doi.org/10.1016/j.jmaa.2010.11.031 Zbl1211.35249
  2. [2] Ambrosetti A., On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274 http://dx.doi.org/10.1007/s00032-008-0094-z Zbl1181.35257
  3. [3] Ambrosetti A., Ruiz D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404 http://dx.doi.org/10.1142/S021919970800282X Zbl1188.35171
  4. [4] Azzollini A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 2010, 249(7), 1746–1763 http://dx.doi.org/10.1016/j.jde.2010.07.007 Zbl1197.35096
  5. [5] Azzollini A., Pomponio A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345(1), 90–108 http://dx.doi.org/10.1016/j.jmaa.2008.03.057 Zbl1147.35091
  6. [6] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal., 1998, 11(2), 283–293 Zbl0926.35125
  7. [7] Cerami G., Vaira G., Positive solutions for some nonautonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521–543 http://dx.doi.org/10.1016/j.jde.2009.06.017 Zbl1183.35109
  8. [8] Coclite G.M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(2–3), 417–423 Zbl1085.81510
  9. [9] D’Aprile T., Mugnai D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect., 2004, 134(5), 893–906 http://dx.doi.org/10.1017/S030821050000353X Zbl1064.35182
  10. [10] D’Aprile T., Mugnai D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307–322 Zbl1142.35406
  11. [11] D’Avenia P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192 
  12. [12] D’Avenia P., Pomponio A., Vaira G., Infinitely many positive solutions for a Schrödinger-Poisson system, Appl. Math. Lett., 2011, 24(5), 661–664 http://dx.doi.org/10.1016/j.aml.2010.12.002 Zbl1211.35104
  13. [13] He X.M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 2011, 62(5), 869–889 http://dx.doi.org/10.1007/s00033-011-0120-9 Zbl1258.35170
  14. [14] He X.M., Zou Z.W., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 2012, 53(2), #023702 Zbl1274.81078
  15. [15] Ianni I., Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 2009, 19(6), 877–910 http://dx.doi.org/10.1142/S0218202509003656 Zbl1187.35236
  16. [16] Ianni I., Vaira G., Solutions of the Schrödinger-Poisson problem concentrating on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci., 2009, 19(5), 707–720 http://dx.doi.org/10.1142/S0218202509003589 Zbl1173.35687
  17. [17] Jiang Y.S., Zhou H.S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 2011, 251(3), 582–608 http://dx.doi.org/10.1016/j.jde.2011.05.006 Zbl1233.35086
  18. [18] Kikuchi H., On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 2007, 67(5), 1445–1456 http://dx.doi.org/10.1016/j.na.2006.07.029 Zbl1119.35085
  19. [19] Li G.B., Peng S., Wang C.H., Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 2011, 52(5), #053505 Zbl1317.35238
  20. [20] Li G.B., Peng S., Yan S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 2010, 12(6), 1069–1092 http://dx.doi.org/10.1142/S0219199710004068 Zbl1206.35082
  21. [21] Lins Haendel F., Silva Elves A.B., Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 2009, 71(7–8), 2890–2905 http://dx.doi.org/10.1016/j.na.2009.01.171 
  22. [22] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989 Zbl0676.58017
  23. [23] Ruiz D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674 http://dx.doi.org/10.1016/j.jfa.2006.04.005 Zbl1136.35037
  24. [24] Silva Elves A.B., Vieira Gilberto F., Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 2010, 39(1–2), 1–33 http://dx.doi.org/10.1007/s00526-009-0299-1 Zbl1223.35290
  25. [25] Sun J.T., Chen H.B., Nieto J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2012, 252(5), 3365–3380 http://dx.doi.org/10.1016/j.jde.2011.12.007 Zbl1241.35057
  26. [26] Sun J.T., Chen H.B., Yang L., Positive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74(2), 413–423 http://dx.doi.org/10.1016/j.na.2010.08.052 Zbl1202.35083
  27. [27] Szulkin A., Weth T., The Method of Nehari Manifold, Gao D.Y. and Motreanu D. (Eds.), Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, 597–632 Zbl1218.58010
  28. [28] Vaira G., Ground states for Schrödinger-Poisson type systems, Ricerche mat., 2011, 60(2), 263–297 http://dx.doi.org/10.1007/s11587-011-0109-x Zbl1261.35057
  29. [29] Wang J., Tian L.X., Xu J.X., Zhang F.B., Existence and concentration of positive ground state solutions for Schrödinger-Poisson systems, Adv. Nonlinear Stud., 2013, 13(3), 553–582 Zbl1295.35219
  30. [30] Wang Z.P., Zhou H.S., Positive solution for a nonlinear stationary Schrödinger-Poisson system in ℝ3, Discrete Contin. Dyn. Syst., 2007, 18(4), 809–816 http://dx.doi.org/10.3934/dcds.2007.18.809 Zbl1133.35427
  31. [31] Willem M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser, Basel, 1996 Zbl0856.49001
  32. [32] Yang M.H., Han Z.Q., Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems, Nonlinear Anal. Real World Appl., 2012, 13(3), 1093–1101 http://dx.doi.org/10.1016/j.nonrwa.2011.07.008 Zbl1241.35192
  33. [33] Zhang H., Xu J.X., Zhang F.B., Positive ground states for asymptotically periodic Schrödinger-Poisson systems, Math. Meth. Appl. Sci., 2013, 36(4), 427–439 http://dx.doi.org/10.1002/mma.2604 Zbl1271.35022
  34. [34] Zhao L.G., Zhao F.K., Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear. Anal., 2009, 70(6), 2150–2164 http://dx.doi.org/10.1016/j.na.2008.02.116 Zbl1156.35374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.