The gap phenomenon in the dimension study of finite type systems
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1605-1618
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBoris Kruglikov. "The gap phenomenon in the dimension study of finite type systems." Open Mathematics 10.5 (2012): 1605-1618. <http://eudml.org/doc/269297>.
@article{BorisKruglikov2012,
abstract = {Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.},
author = {Boris Kruglikov},
journal = {Open Mathematics},
keywords = {Overdetermined systems; Compatibility; Symmetric models; Polynomial integrals; Tanaka algebra; overdetermined systems; compatibility; symmetric models; polynomial integrals},
language = {eng},
number = {5},
pages = {1605-1618},
title = {The gap phenomenon in the dimension study of finite type systems},
url = {http://eudml.org/doc/269297},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Boris Kruglikov
TI - The gap phenomenon in the dimension study of finite type systems
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1605
EP - 1618
AB - Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.
LA - eng
KW - Overdetermined systems; Compatibility; Symmetric models; Polynomial integrals; Tanaka algebra; overdetermined systems; compatibility; symmetric models; polynomial integrals
UR - http://eudml.org/doc/269297
ER -
References
top- [1] Anderson I., Kruglikov B., Rank 2 distributions of Monge equations: symmetries, equivalences, extensions, Adv. Math., 2011, 228(3), 1435–1465 http://dx.doi.org/10.1016/j.aim.2011.06.019 Zbl1234.34010
- [2] Bialy M., Mironov A.E., Rich quasi-linear system for integrable geodesic flows on 2-torus, Discrete Contin. Dyn. Syst., 2011, 29(1), 81–90 http://dx.doi.org/10.3934/dcds.2011.29.81 Zbl1232.37035
- [3] Cartan E., Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup., 1910, 27, 109–192 Zbl41.0417.01
- [4] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, 2, 4, Gauthier-Villar, Paris, 1887, 1896
- [5] Doubrov B., Zelenko I., On local geometry of non-holonomic rank 2 distributions, J. London Math. Soc., 2009, 80(3), 545–566 http://dx.doi.org/10.1112/jlms/jdp044 Zbl1202.58002
- [6] Dunajski M., West S., Anti-self-dual conformal structures in neutral signature, In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society, Zürich, 2008, 113–148 Zbl1158.53014
- [7] Egorov I.P., Riemannian spaces of the first three lacunary types in the geometric sense, Dokl. Akad. Nauk SSSR, 1963, 150, 730–732
- [8] Egorov I.P., Motions in Spaces of Affine Connection, 2nd ed., Librokom, Moscow, 2009 (in Russian)
- [9] Eisenhart L.P., Riemannian Geometry, Princeton University Press, Princeton, 1949
- [10] Goursat E., Leçons sur l’Intégration des Équations aux Dérivées Partielles du Second Ordere à Deux Variables Indépendantes, 2, Hermann, Paris, 1898 Zbl27.0264.04
- [11] Kiosak V.A., Matveev V.S., Mikeš J., Shandra I.G., On the degree of geodesic mobility of Riemannian metrics, Math. Notes, 2010, 87(3–4), 586–587 http://dx.doi.org/10.1134/S0001434610030375 Zbl1200.53044
- [12] Kiyohara K., Compact Liouville surfaces, J. Math. Soc. Japan, 1991, 43(3), 555–591 http://dx.doi.org/10.2969/jmsj/04330555 Zbl0751.53015
- [13] Kobayashi S., Transformation Groups in Differential Geometry, Classics Math., Springer, Berlin, 1995 Zbl0829.53023
- [14] Kolokol’tsov V., Polynomial Integrals of Geodesic Flows on Compact Surfaces, PhD thesis, Moscow State University, Moscow, 1984 (in Russian)
- [15] Kruglikov B., Invariant characterization of Liouville metrics and polynomial integrals, J. Geom. Phys., 2008, 58(8), 979–995 http://dx.doi.org/10.1016/j.geomphys.2008.03.005 Zbl1145.53067
- [16] Kruglikov B., Point classification of second order ODEs: Tresse classification revisited and beyond, In: Differential Equations: Geometry, Symmetries and Integrability, Tromsø, June 17–22, 2008, Abel Symp., 5, Springer, Berlin, 2009, 199–221 http://dx.doi.org/10.1007/978-3-642-00873-3_10
- [17] Kruglikov B., Finite-dimensionality in Tanaka theory, Ann. Inst. H.Poincaré Anal. Non Linéaire, 2011, 28(1), 75–90 http://dx.doi.org/10.1016/j.anihpc.2010.10.001 Zbl1260.58001
- [18] Kruglikov B., Symmetries of almost complex structures and pseudoholomorphic foliations, preprint available at http://arxiv.org/abs/1103.4404 Zbl1304.32016
- [19] Kruglikov B., Lychagin V., Geometry of differential equations, In: Handbook on Global Analysis, 1214, Elsevier, Amsterdam, 2008, 725–771 http://dx.doi.org/10.1016/B978-044452833-9.50015-2 Zbl1236.58039
- [20] Matveev V.S., Shevchishin V., Two-dimensional superintegrable metrics with one linear and one cubic integral, J. Geom. Phys., 2011, 61(8), 1353–1377 http://dx.doi.org/10.1016/j.geomphys.2011.02.012 Zbl1218.53087
- [21] Matveev V.S., Topalov P.Ĭ., Trajectory equivalence and corresponding integrals, Regul. Chaotic Dyn., 1998, 3(2), 30–45 http://dx.doi.org/10.1070/rd1998v003n02ABEH000069 Zbl0928.37003
- [22] Patrangenaru V., Lorentz manifolds with the three largest degrees of symmetry, Geom. Dedicata, 2003, 102, 25–33 http://dx.doi.org/10.1023/B:GEOM.0000006588.95481.1c Zbl1051.53058
- [23] Tanaka N., On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., 1970, 10, 1–82
- [24] Tresse A., Détermination des Invariants Ponctuels de l’Équation Différentielle Ordinaire de Second Ordre y″ = ω(x, y, y′), Preisschriften der fürstlichen Jablonowski’schen Gesellschaft, 32, Hirzel, Leipzig, 1896 Zbl27.0254.01
- [25] Yano K., Kon M., Structures on Manifolds, Ser. Pure Math., 3, World Scientific, Singapore, 1984
- [26] Zimmer R., On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math., 1986, 83(3), 411–424 http://dx.doi.org/10.1007/BF01394415 Zbl0591.53026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.