Ulam stability for a delay differential equation

Diana Otrocol; Veronica Ilea

Open Mathematics (2013)

  • Volume: 11, Issue: 7, page 1296-1303
  • ISSN: 2391-5455

Abstract

top
We study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.

How to cite

top

Diana Otrocol, and Veronica Ilea. "Ulam stability for a delay differential equation." Open Mathematics 11.7 (2013): 1296-1303. <http://eudml.org/doc/269304>.

@article{DianaOtrocol2013,
abstract = {We study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.},
author = {Diana Otrocol, Veronica Ilea},
journal = {Open Mathematics},
keywords = {Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Delay differential equation; delay differential equation; stability; Ulam-Hyers; Ulam-Hyers-Rassias},
language = {eng},
number = {7},
pages = {1296-1303},
title = {Ulam stability for a delay differential equation},
url = {http://eudml.org/doc/269304},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Diana Otrocol
AU - Veronica Ilea
TI - Ulam stability for a delay differential equation
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1296
EP - 1303
AB - We study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.
LA - eng
KW - Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Delay differential equation; delay differential equation; stability; Ulam-Hyers; Ulam-Hyers-Rassias
UR - http://eudml.org/doc/269304
ER -

References

top
  1. [1] Bota-Boriceanu M.F., Petruşel A., Ulam-Hyers stability for operatorial equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 2011, 57(suppl. 1), 65–74 Zbl1265.54158
  2. [2] Castro L.P., Ramos A., Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 2009, 3(1), 36–43 Zbl1177.45010
  3. [3] Guo D., Lakshmikantham V., Liu X., Nonlinear Integral Equations in Abstract Spaces, Math. Appl., 373, Kuwer, Dordrecht, 1996 Zbl0866.45004
  4. [4] Hyers D.H., Isac G., Rassias Th.M., Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhäuser, Boston, 1998 http://dx.doi.org/10.1007/978-1-4612-1790-9[Crossref] Zbl0907.39025
  5. [5] Jung S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007, #57064 
  6. [6] Kolmanovskiĭ V., Myshkis A., Applied Theory of Functional-Differential Equations, Math. Appl. (Soviet Ser.), 85, Kluwer, Dordrecht, 1992 http://dx.doi.org/10.1007/978-94-015-8084-7[Crossref] Zbl0917.34001
  7. [7] Otrocol D., Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl., 2010, 15(4), 613–619 Zbl1242.45011
  8. [8] Petru T.P., Petruşel A., Yao J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 2011, 15(5), 2195–2212 Zbl1246.54049
  9. [9] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4(1), 91–96 Zbl1051.39031
  10. [10] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72(2), 297–300 http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1[Crossref] 
  11. [11] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001 
  12. [12] Rus I.A., Gronwall lemmas: ten open problems, Sci. Math. Jpn., 2009, 70(2), 221–228 Zbl1223.47064
  13. [13] Rus I.A., Ulam stability of ordinary differential equations, Stud. Univ. Babeş-Bolyai Math., 2009, 54(4), 125–133 Zbl1224.34165
  14. [14] Rus I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 2009, 10(2), 305–320 Zbl1204.47071
  15. [15] Ulam S.M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience, New York-London, 1960 Zbl0086.24101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.