Ulam stability for a delay differential equation
Open Mathematics (2013)
- Volume: 11, Issue: 7, page 1296-1303
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDiana Otrocol, and Veronica Ilea. "Ulam stability for a delay differential equation." Open Mathematics 11.7 (2013): 1296-1303. <http://eudml.org/doc/269304>.
@article{DianaOtrocol2013,
abstract = {We study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.},
author = {Diana Otrocol, Veronica Ilea},
journal = {Open Mathematics},
keywords = {Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Delay differential equation; delay differential equation; stability; Ulam-Hyers; Ulam-Hyers-Rassias},
language = {eng},
number = {7},
pages = {1296-1303},
title = {Ulam stability for a delay differential equation},
url = {http://eudml.org/doc/269304},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Diana Otrocol
AU - Veronica Ilea
TI - Ulam stability for a delay differential equation
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1296
EP - 1303
AB - We study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.
LA - eng
KW - Ulam-Hyers stability; Ulam-Hyers-Rassias stability; Delay differential equation; delay differential equation; stability; Ulam-Hyers; Ulam-Hyers-Rassias
UR - http://eudml.org/doc/269304
ER -
References
top- [1] Bota-Boriceanu M.F., Petruşel A., Ulam-Hyers stability for operatorial equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 2011, 57(suppl. 1), 65–74 Zbl1265.54158
- [2] Castro L.P., Ramos A., Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 2009, 3(1), 36–43 Zbl1177.45010
- [3] Guo D., Lakshmikantham V., Liu X., Nonlinear Integral Equations in Abstract Spaces, Math. Appl., 373, Kuwer, Dordrecht, 1996 Zbl0866.45004
- [4] Hyers D.H., Isac G., Rassias Th.M., Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhäuser, Boston, 1998 http://dx.doi.org/10.1007/978-1-4612-1790-9[Crossref] Zbl0907.39025
- [5] Jung S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007, #57064
- [6] Kolmanovskiĭ V., Myshkis A., Applied Theory of Functional-Differential Equations, Math. Appl. (Soviet Ser.), 85, Kluwer, Dordrecht, 1992 http://dx.doi.org/10.1007/978-94-015-8084-7[Crossref] Zbl0917.34001
- [7] Otrocol D., Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl., 2010, 15(4), 613–619 Zbl1242.45011
- [8] Petru T.P., Petruşel A., Yao J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 2011, 15(5), 2195–2212 Zbl1246.54049
- [9] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4(1), 91–96 Zbl1051.39031
- [10] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72(2), 297–300 http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1[Crossref]
- [11] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
- [12] Rus I.A., Gronwall lemmas: ten open problems, Sci. Math. Jpn., 2009, 70(2), 221–228 Zbl1223.47064
- [13] Rus I.A., Ulam stability of ordinary differential equations, Stud. Univ. Babeş-Bolyai Math., 2009, 54(4), 125–133 Zbl1224.34165
- [14] Rus I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 2009, 10(2), 305–320 Zbl1204.47071
- [15] Ulam S.M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience, New York-London, 1960 Zbl0086.24101
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.