On mild solutions of gradient systems in Hilbert spaces

Andrzej Rozkosz

Open Mathematics (2013)

  • Volume: 11, Issue: 11, page 1994-2004
  • ISSN: 2391-5455

Abstract

top
We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.

How to cite

top

Andrzej Rozkosz. "On mild solutions of gradient systems in Hilbert spaces." Open Mathematics 11.11 (2013): 1994-2004. <http://eudml.org/doc/269307>.

@article{AndrzejRozkosz2013,
abstract = {We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.},
author = {Andrzej Rozkosz},
journal = {Open Mathematics},
keywords = {Gradient systems; Ornstein-Uhlenbeck operator; Mild solution; Backward stochastic differential equation; gradient systems; mild solution; backward stochastic differential equation},
language = {eng},
number = {11},
pages = {1994-2004},
title = {On mild solutions of gradient systems in Hilbert spaces},
url = {http://eudml.org/doc/269307},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Andrzej Rozkosz
TI - On mild solutions of gradient systems in Hilbert spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 11
SP - 1994
EP - 2004
AB - We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.
LA - eng
KW - Gradient systems; Ornstein-Uhlenbeck operator; Mild solution; Backward stochastic differential equation; gradient systems; mild solution; backward stochastic differential equation
UR - http://eudml.org/doc/269307
ER -

References

top
  1. [1] Ball J.M., Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 1977, 63(2), 370–373 Zbl0353.47017
  2. [2] Chojnowska-Michalik A., Transition Semigroups for Stochastic Semilinear Equations on Hilbert Spaces, Dissertationes Math. (Rozprawy Mat.), 396, Polish Academy of Sciences, Warsaw, 2001 
  3. [3] Da Prato G., Kolmogorov Equations for Stochastic PDEs, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2004 http://dx.doi.org/10.1007/978-3-0348-7909-5 
  4. [4] Da Prato G., An Introduction to Infinite-Dimensional Analysis, Universitext, Springer, Berlin, 2006 Zbl1109.46001
  5. [5] Da Prato G., Tubaro L., Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization, Probab. Theory Related Fields, 2000, 118(1), 131–145 Zbl0971.47019
  6. [6] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1992 http://dx.doi.org/10.1017/CBO9780511666223 Zbl0761.60052
  7. [7] Da Prato G., Zabczyk J., Second Order Partial Differential Equations in Hilbert Spaces, London Math. Soc. Lecture Note Ser., 293, Cambridge University Press, Cambridge, 2002 http://dx.doi.org/10.1017/CBO9780511543210 Zbl1012.35001
  8. [8] Fuhrman M., Tessitore G., Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control, Ann. Probab., 2002, 30(3), 1397–1465 http://dx.doi.org/10.1214/aop/1029867132 Zbl1017.60076
  9. [9] Oharu S., Takahashi T., Characterization of nonlinear semigroups associated with semilinear evolution equations, Trans. Amer. Math. Soc., 1989, 311(2), 593–619 http://dx.doi.org/10.1090/S0002-9947-1989-0978369-9 Zbl0679.58011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.