A generalization of Krasnosel’skii fixed point theorem for sums of compact and contractible maps with application

Bogdan Przeradzki

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2012-2018
  • ISSN: 2391-5455

Abstract

top
The existence of a fixed point for the sum of a generalized contraction and a compact map on a closed convex bounded set is proved. The result is applied to a kind of nonlinear integral equations.

How to cite

top

Bogdan Przeradzki. "A generalization of Krasnosel’skii fixed point theorem for sums of compact and contractible maps with application." Open Mathematics 10.6 (2012): 2012-2018. <http://eudml.org/doc/269314>.

@article{BogdanPrzeradzki2012,
abstract = {The existence of a fixed point for the sum of a generalized contraction and a compact map on a closed convex bounded set is proved. The result is applied to a kind of nonlinear integral equations.},
author = {Bogdan Przeradzki},
journal = {Open Mathematics},
keywords = {Condensing map; Generalized contraction; Nemytskii operator; condensing map; generalized contraction},
language = {eng},
number = {6},
pages = {2012-2018},
title = {A generalization of Krasnosel’skii fixed point theorem for sums of compact and contractible maps with application},
url = {http://eudml.org/doc/269314},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Bogdan Przeradzki
TI - A generalization of Krasnosel’skii fixed point theorem for sums of compact and contractible maps with application
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2012
EP - 2018
AB - The existence of a fixed point for the sum of a generalized contraction and a compact map on a closed convex bounded set is proved. The result is applied to a kind of nonlinear integral equations.
LA - eng
KW - Condensing map; Generalized contraction; Nemytskii operator; condensing map; generalized contraction
UR - http://eudml.org/doc/269314
ER -

References

top
  1. [1] Agarwal R.P., O’Regan D., Fixed points of cone compression and expansion multimaps defined on Fréchet spaces: the projective limit approach, J. Appl. Math. Stoch. Anal., 2006, #92375 
  2. [2] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Marcel Dekker, New York, 1980 Zbl0441.47056
  3. [3] Burton T.A., Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc., 1996, 124(8), 2383–2390 http://dx.doi.org/10.1090/S0002-9939-96-03533-2[Crossref] Zbl0873.45003
  4. [4] Burton T.A., A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 1998, 11(1), 85–88 http://dx.doi.org/10.1016/S0893-9659(97)00138-9[Crossref] Zbl1127.47318
  5. [5] Garcia-Falset J., Latrach K., Moreno-Gálvez E., Taoudi M.-A., Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness, J. Differential Equations, 2012, 252(5), 3436–3452 http://dx.doi.org/10.1016/j.jde.2011.11.012[WoS][Crossref] Zbl1252.47047
  6. [6] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003 Zbl1025.47002
  7. [7] Jachymski J.R., Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., 1997, 125(8), 2327–2335 http://dx.doi.org/10.1090/S0002-9939-97-03853-7[Crossref] Zbl0887.47039
  8. [8] Krasnosel’skiĭ M.A., Some problems of nonlinear analysis, In: Amer. Math. Soc. Transl. Ser. 2, 10, American Mathematical Society, Providence, 1958, 345–409 
  9. [9] Krasnosel’skiĭ M.A., Vaĭnikko G.M., Zabreĭko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Approximate Solution of Operator Equations, Wolters-Noordhoff, Groningen, 1972 http://dx.doi.org/10.1007/978-94-010-2715-1[Crossref] 
  10. [10] Kryszewski W., Mederski J., Fixed point index for Krasnosel’skii-type set-valued maps on complete ANRs, Topol. Methods Nonlinear Anal., 2008, 28(2), 335–384 Zbl1136.47039
  11. [11] Liu Y., Li Z., Krasnoselskii type fixed point theorem and applications, Proc. Amer. Math. Soc., 2008, 136(4), 1213–1220 http://dx.doi.org/10.1090/S0002-9939-07-09190-3[Crossref] Zbl1134.47040
  12. [12] Ngoc L.T.P., Long N.T., Applying a fixed point theorem of Krasnosel’skii type to the existence of asymptotically stable solutions for a Volterra-Hammerstein integral equation, Nonlinear Anal., 2011, 74(11), 3769–3774 http://dx.doi.org/10.1016/j.na.2011.03.021[Crossref][WoS] Zbl1214.47049
  13. [13] O’Regan D., Fixed-point theory for the sum of two operators, Appl. Math. Lett., 1996, 9(1), 1–8 http://dx.doi.org/10.1016/0893-9659(95)00093-3[Crossref] 
  14. [14] Sadovskiĭ B.N., Limit-compact and condensing operators, Uspehi Mat. Nauk, 1972, 27(1), 81–146 (in Russian) Zbl0232.47067
  15. [15] Xiang T., Krasnosel’skii fixed point theorem for dissipative operators, Electron. J. Differential Equations, 2011, #147 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.