Derived category of toric varieties with small Picard number
Open Mathematics (2012)
- Volume: 10, Issue: 4, page 1280-1291
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topLaura Costa, and Rosa Miró-Roig. "Derived category of toric varieties with small Picard number." Open Mathematics 10.4 (2012): 1280-1291. <http://eudml.org/doc/269319>.
@article{LauraCosta2012,
abstract = {This paper aims to construct a full strongly exceptional collection of line bundles in the derived category D b(X), where X is the blow up of ℙn−r ×ℙr along a multilinear subspace ℙn−r−1×ℙr−1 of codimension 2 of ℙn−r ×ℙr. As a main tool we use the splitting of the Frobenius direct image of line bundles on toric varieties.},
author = {Laura Costa, Rosa Miró-Roig},
journal = {Open Mathematics},
keywords = {Derived categories; Toric varieties; Full strongly exceptional collections; full strongly exceptional collections; toric varieties; blow-up; derived category},
language = {eng},
number = {4},
pages = {1280-1291},
title = {Derived category of toric varieties with small Picard number},
url = {http://eudml.org/doc/269319},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Laura Costa
AU - Rosa Miró-Roig
TI - Derived category of toric varieties with small Picard number
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1280
EP - 1291
AB - This paper aims to construct a full strongly exceptional collection of line bundles in the derived category D b(X), where X is the blow up of ℙn−r ×ℙr along a multilinear subspace ℙn−r−1×ℙr−1 of codimension 2 of ℙn−r ×ℙr. As a main tool we use the splitting of the Frobenius direct image of line bundles on toric varieties.
LA - eng
KW - Derived categories; Toric varieties; Full strongly exceptional collections; full strongly exceptional collections; toric varieties; blow-up; derived category
UR - http://eudml.org/doc/269319
ER -
References
top- [1] Batyrev V.V., On the classification of smooth projective toric varieties, Tohoku Math. J., 1991, 43(4), 569–585 http://dx.doi.org/10.2748/tmj/1178227429 Zbl0792.14026
- [2] Beilinson A.A., Coherent sheaves on ℙn and problems of linear algebra, Funct. Anal. Appl., 1978, 12(3), 214–216 http://dx.doi.org/10.1007/BF01681436 Zbl0424.14003
- [3] Bondal A.I., Representations of associative algebras and coherent sheaves, Math. USSR-Izv., 1990, 34(1), 23–42 http://dx.doi.org/10.1070/IM1990v034n01ABEH000583 Zbl0692.18002
- [4] Bondal A.I., Derived categories of toric varieties, In: Convex and Algebraic Geometry, Oberwolfach, January 29–February 4, 2006, Oberwolfach Rep., 2006, 3(5), 284–286
- [5] Bondal A., Orlov D., Derived categories of coherent sheaves, In: Proceedings of the International Congress of Mathematicians, 2, Beijing, August 20–28, 2002, Higher Education Press, Beijing, 2002, 47–56 Zbl0996.18007
- [6] Costa L., Miró-Roig R.M., Tilting sheaves on toric varieties, Math. Z., 2004, 248(4), 849–865 http://dx.doi.org/10.1007/s00209-004-0684-6 Zbl1071.14022
- [7] Costa L., Miró-Roig R.M., Derived categories of projective bundles, Proc. Amer. Math. Soc., 2005, 133(9), 2533–2537 http://dx.doi.org/10.1090/S0002-9939-05-07846-9 Zbl1108.14011
- [8] Costa L., Miró-Roig R.M., Frobenius splitting and Derived category of toric varieties, Illinois J. Math., 2010, 54(2), 649–669 Zbl1230.14018
- [9] Costa L., Miró-Roig R.M., Derived category of fibrations, Math. Res. Lett., 2011, 18(3), 425–432 Zbl1253.14015
- [10] Fulton W., Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, 1993 Zbl0813.14039
- [11] Funch Thomsen J., Frobenius direct images of line bundles on toric varieties, J. Algebra, 2000, 226(2), 865–874 http://dx.doi.org/10.1006/jabr.1999.8184 Zbl0957.14036
- [12] Gorodentsev A.L., Kuleshov S.A., Helix theory, Mosc. Math. J., 2004, 4(2), 377–440 Zbl1072.14020
- [13] Hille L., Perling M., Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math., 2011, 147(4), 1230–1280 http://dx.doi.org/10.1112/S0010437X10005208 Zbl1237.14043
- [14] Kapranov M.M., On the derived category of coherent sheaves on Grassmann manifolds, Math. USSR-Izv., 1985, 24(1), 183–192 http://dx.doi.org/10.1070/IM1985v024n01ABEH001221 Zbl0564.14023
- [15] Kapranov M.M., On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math., 1988, 92(3), 479–508 http://dx.doi.org/10.1007/BF01393744 Zbl0651.18008
- [16] Kawamata Y., Derived categories of toric varieties, Michigan Math. J., 2006, 54(3), 517–535 http://dx.doi.org/10.1307/mmj/1163789913 Zbl1159.14026
- [17] King A., Tilting bundles on some rational surfaces, preprint available at http://www.maths.bath.ac.uk/~masadk/papers/
- [18] Kuznetsov A.G., Derived category of Fano threefolds, Proc. Steklov Inst. Math., 2009, 264(1), 110–122 http://dx.doi.org/10.1134/S0081543809010143 Zbl1312.14055
- [19] Lason M., Michałek M., On the full, strongly exceptional collections on toric varieties with Picard number three, Collect. Math., 2011, 62(3), 275–296 http://dx.doi.org/10.1007/s13348-011-0044-x Zbl1238.14039
- [20] Oda T., Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb., 15, Springer, Berlin, 1988
- [21] Orlov D.O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math., 1993, 41(1), 133–141
- [22] Samokhin A., Some remarks on the derived categories of coherent sheaves on homogeneous spaces, J. Lond. Math. Soc., 2007, 76(1), 122–134 http://dx.doi.org/10.1112/jlms/jdm038 Zbl1140.18009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.