Statistical approximation to Bögel-type continuous and periodic functions
Fadime Dirik; Oktay Duman; Kamil Demirci
Open Mathematics (2009)
- Volume: 7, Issue: 3, page 539-549
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFadime Dirik, Oktay Duman, and Kamil Demirci. "Statistical approximation to Bögel-type continuous and periodic functions." Open Mathematics 7.3 (2009): 539-549. <http://eudml.org/doc/269340>.
@article{FadimeDirik2009,
abstract = {In this paper, considering A-statistical convergence instead of Pringsheim’s sense for double sequences, we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on the space of all real valued Bögel-type continuous and periodic functions on the whole real two-dimensional space. A strong application is also presented. Furthermore, we obtain some rates of A-statistical convergence in our approximation.},
author = {Fadime Dirik, Oktay Duman, Kamil Demirci},
journal = {Open Mathematics},
keywords = {The Korovkin theorem; B-continuous functions; B-2π-periodic functions; A-statistical convergence for double sequences; Regularity for double sequences; Korovkin theorem; -continuous functions; -periodic functions; -statistical convergence for double sequences; regularity for double sequences},
language = {eng},
number = {3},
pages = {539-549},
title = {Statistical approximation to Bögel-type continuous and periodic functions},
url = {http://eudml.org/doc/269340},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Fadime Dirik
AU - Oktay Duman
AU - Kamil Demirci
TI - Statistical approximation to Bögel-type continuous and periodic functions
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 539
EP - 549
AB - In this paper, considering A-statistical convergence instead of Pringsheim’s sense for double sequences, we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on the space of all real valued Bögel-type continuous and periodic functions on the whole real two-dimensional space. A strong application is also presented. Furthermore, we obtain some rates of A-statistical convergence in our approximation.
LA - eng
KW - The Korovkin theorem; B-continuous functions; B-2π-periodic functions; A-statistical convergence for double sequences; Regularity for double sequences; Korovkin theorem; -continuous functions; -periodic functions; -statistical convergence for double sequences; regularity for double sequences
UR - http://eudml.org/doc/269340
ER -
References
top- [1] Anastassiou G.A., Duman O., A Baskakov type generalization of statistical Korovkin theory, J. Math. Anal. Appl., 2008, 340, 476–486 http://dx.doi.org/10.1016/j.jmaa.2007.08.040 Zbl1133.41004
- [2] Anastassiou G.A., Gal S.G., Approximation theory: Moduli of continuity and global smoothness preservation, Birkhäuser, Boston, 2000 Zbl0937.41001
- [3] Badea I., Modulus of continuity in Bögel sense and some applications for approximation by a Bernstein-type operator, Stud. Univ. Babeş-Bolyai Math., 1973, 18, 69–78 (in Romanian)
- [4] Badea C., Badea I., Cottin C., A Korovkin-type theorem for generalizations of Boolean sum operators and approximation by trigonometric pseudopolynomials, Anal. Numér. Théor. Approx., 1988, 17, 7–17 Zbl0671.42003
- [5] Badea C., Badea I., Gonska H.H., A test function and approximation by pseudopolynomials, Bull. Austral. Math. Soc., 1986, 34, 53–64 http://dx.doi.org/10.1017/S0004972700004494 Zbl0595.41017
- [6] Badea C., Cottin C., Korovkin-type theorems for generalized Boolean sum operators, Approximation theory (Kecskemét, 1990), 51–68, Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1991, 58 Zbl0765.41020
- [7] Bojanic R., Shisha O., Approximation of continuous, periodic functions by discrete positive linear operators, J. Approx. Theory, 1974, 11, 231–235 http://dx.doi.org/10.1016/0021-9045(74)90015-X Zbl0298.41014
- [8] Bögel K., Mehrdimensionale differentiation von funktionen mehrerer veränderlicher, J. Reine Angew. Math., 1934, 170, 197–217 Zbl60.0215.02
- [9] Bögel K., Über mehrdimensionale differentiation, integration und beschränkte variation, J. Reine Angew. Math., 1935, 173, 5–29 Zbl0011.05903
- [10] Bögel K., Über die mehrdimensionale differentiation, Jahresber. Deutsch. Math.-Verein., 1962, 65, 45–71 Zbl0111.05901
- [11] Cottin C., Approximation by bounded pseudo-polynomials, In: Musielak J. et al (Eds.), Function Spaces, Teubner-Texte zur Mathematik, 1991, 120, 152–160 Zbl0741.41004
- [12] Duman O., Statistical approximation for periodic functions, Demonstratio Math., 2003, 36, 873–878 Zbl1065.41041
- [13] Duman O., Erkuş E., Gupta V., Statistical rates on the multivariate approximation theory, Math. Comput. Modelling, 2006, 44, 763–770 http://dx.doi.org/10.1016/j.mcm.2006.02.009 Zbl1132.41330
- [14] Erkuş E., Duman O., Srivastava H.M., Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput., 2006, 182, 213–222 http://dx.doi.org/10.1016/j.amc.2006.01.090 Zbl1103.41024
- [15] Hamilton H.J., Transformations of multiple sequences, Duke Math. J., 1936, 2, 29–60 http://dx.doi.org/10.1215/S0012-7094-36-00204-1 Zbl0013.30301
- [16] Hardy G.H., Divergent Series, Oxford Univ. Press, London, 1949 Zbl0032.05801
- [17] Karakuş S., Demirci K., Duman O., Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl., 2008, 339, 1065–1072 http://dx.doi.org/10.1016/j.jmaa.2007.07.050 Zbl1131.41008
- [18] Moricz F., Statistical convergence of multiple sequences, Arch. Math. (Basel), 2004, 81, 82–89 Zbl1041.40001
- [19] Mursaleen, Edely O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 2003, 288, 223–231 http://dx.doi.org/10.1016/j.jmaa.2003.08.004 Zbl1032.40001
- [20] Pringsheim A., Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 1900, 53, 289–321 http://dx.doi.org/10.1007/BF01448977
- [21] Robison G.M., Divergent double sequences and series, Amer. Math. Soc. Transl., 1926, 28, 50–73 http://dx.doi.org/10.2307/1989172 Zbl52.0223.01
- [22] Schumaker L.L., Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981 Zbl0449.41004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.