Composition results for strongly summing and dominated multilinear operators

Dumitru Popa

Open Mathematics (2014)

  • Volume: 12, Issue: 10, page 1433-1446
  • ISSN: 2391-5455

Abstract

top
In this paper we prove some composition results for strongly summing and dominated operators. As an application we give necessary and sufficient conditions for a multilinear tensor product of multilinear operators to be strongly summing or dominated. Moreover, we show the failure of some possible n-linear versions of Grothendieck’s composition theorem in the case n ≥ 2 and give a new example of a 1-dominated, hence strongly 1-summing bilinear operator which is not weakly compact.

How to cite

top

Dumitru Popa. "Composition results for strongly summing and dominated multilinear operators." Open Mathematics 12.10 (2014): 1433-1446. <http://eudml.org/doc/269356>.

@article{DumitruPopa2014,
abstract = {In this paper we prove some composition results for strongly summing and dominated operators. As an application we give necessary and sufficient conditions for a multilinear tensor product of multilinear operators to be strongly summing or dominated. Moreover, we show the failure of some possible n-linear versions of Grothendieck’s composition theorem in the case n ≥ 2 and give a new example of a 1-dominated, hence strongly 1-summing bilinear operator which is not weakly compact.},
author = {Dumitru Popa},
journal = {Open Mathematics},
keywords = {p-summing; Dominated; Strongly summing; Multilinear operators; strongly summing multilinear operators; dominated multilinear operators},
language = {eng},
number = {10},
pages = {1433-1446},
title = {Composition results for strongly summing and dominated multilinear operators},
url = {http://eudml.org/doc/269356},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Dumitru Popa
TI - Composition results for strongly summing and dominated multilinear operators
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1433
EP - 1446
AB - In this paper we prove some composition results for strongly summing and dominated operators. As an application we give necessary and sufficient conditions for a multilinear tensor product of multilinear operators to be strongly summing or dominated. Moreover, we show the failure of some possible n-linear versions of Grothendieck’s composition theorem in the case n ≥ 2 and give a new example of a 1-dominated, hence strongly 1-summing bilinear operator which is not weakly compact.
LA - eng
KW - p-summing; Dominated; Strongly summing; Multilinear operators; strongly summing multilinear operators; dominated multilinear operators
UR - http://eudml.org/doc/269356
ER -

References

top
  1. [1] Alencar R., Matos M. C., Some classes of multilinear mappings between Banach spaces, Publicaciones del Departamento de Análisis Matemático, sec. 1, no. 12 (1989), Universidad Complutense de Madrid 
  2. [2] Bernardino A. T., On cotype and a Grothendieck-type theorem for absolutely summing multilinear operators, Quaest. Math., 2011, 34(4), 513–519 http://dx.doi.org/10.2989/16073606.2011.640747 Zbl1274.46092
  3. [3] Bombal F., Pérez-García D., Villanueva I., Multilinear extensions of Grothendieck’s theorem, Q. J. Math., 2004, 55(4), 441–450 http://dx.doi.org/10.1093/qmath/hah017 Zbl1078.46030
  4. [4] Botelho G., Weakly compact and absolutely summing polynomials, J. Math. Anal. Appl., 2002, 265(2), 458–462 http://dx.doi.org/10.1006/jmaa.2001.7674 
  5. [5] Botelho G., Ideals of polynomials generated by weakly compact operators, Note Mat. 2005/2006, 25, 69–102 
  6. [6] Botelho G., Pellegrino D., Rueda P., A unified Pietsch domination theorem, J. Math. Anal. Appl., 2010, 365(1), 269–276 http://dx.doi.org/10.1016/j.jmaa.2009.10.025 Zbl1193.46026
  7. [7] Botelho G., Braunss H.-A., Junek H., Pellegrino D., Holomorphy types and ideals of multilinear mappings, Studia Math., 2006, 177, 43–65. http://dx.doi.org/10.4064/sm177-1-4 Zbl1112.46038
  8. [8] Botelho G., Pellegrino D., When every multilinear mapping is multiple summing, Math. Nachr., 2009, 282(10), 1414–1422 http://dx.doi.org/10.1002/mana.200710112 Zbl1191.46041
  9. [9] Çalişkan E., Pellegrino D., On the multilinear generalizations of the concept of absolutely summing operators, Rocky Mountain J. Math., 2007, 37(4), 1137–1154 http://dx.doi.org/10.1216/rmjm/1187453101 Zbl1152.46034
  10. [10] Carando D., Dimant V., On summability of bilinear operators, Math. Nachr. 2003, 259(1), 3–11 http://dx.doi.org/10.1002/mana.200310090 Zbl1037.46045
  11. [11] Carl B., Defant A., Ramanujan M. S., On tensor stable operator ideals, Mich. Math. J., 1989, 36(1), 63–75 http://dx.doi.org/10.1307/mmj/1029003882 Zbl0669.47025
  12. [12] Defant A., Floret K., Tensor norms and operator ideals, North-Holland, Math. Studies, 176, 1993 Zbl0774.46018
  13. [13] Defant A., Popa D., Schwarting U., Coordinatewise multiple summing operators in Banach spaces, Journ. Funct. Anal., 2010, 259(1), 220–242 http://dx.doi.org/10.1016/j.jfa.2010.01.008 Zbl1205.46026
  14. [14] Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, 1995 
  15. [15] Diestel J., Fourie J. H., Swart J., The metric theory of tensor products. Grothendieck’s résumé revisited, American Mathematical Society, Providence, RI, 2008 Zbl1186.46004
  16. [16] Dimant V., Strongly p-summing multilinear operators, J. Math. Anal. Appl., 2003, 278(1), 182–193 http://dx.doi.org/10.1016/S0022-247X(02)00710-2 Zbl1043.47018
  17. [17] Dineen S., Complex analysis in locally convex spaces, North-Holland Mathematics Studies, 57, 1981 
  18. [18] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, 1999 http://dx.doi.org/10.1007/978-1-4471-0869-6 
  19. [19] Dubinsky Ed., Pelczyński A., Rosenthal H. P., On Banach spaces X for which Π2 (ℒ ∞, X) = B (ℒ ∞, X), Studia Math., 1972, 44, 617–648 
  20. [20] Floret K., García D., On ideals of polynomials and multilinear mappings between Banach spaces, Arch. Math. (Basel), 2003, 81(3), 300–308 http://dx.doi.org/10.1007/s00013-003-0439-3 Zbl1049.46030
  21. [21] Geiss S., Ideale multilinearer Abbildungen, Diplomarbeit, 1984 
  22. [22] Grothendieck A., Résume de la théorie metrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paolo 8 (1953/1956), 1–79 
  23. [23] Holub J. R., Tensor product mappings, Math. Ann., 1970, 188, 1–12 http://dx.doi.org/10.1007/BF01435409 Zbl0195.41601
  24. [24] Jarchow H., Palazuelos C., Pérez-García D., Villanueva I., Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl., 2007, 336(2), 1161–1177 http://dx.doi.org/10.1016/j.jmaa.2007.03.057 Zbl1161.46025
  25. [25] Lindenstrauss J., Pełczynski A., Absolutely summing operators in ℒ p-spaces and their applications, Studia Math. 1968, 29, 257–326 Zbl0183.40501
  26. [26] Matos M. C., On multilinear mappings of nuclear type, Rev. Mat. Univ.Complut. Madrid, 1993, 6(1), 61–81 Zbl0807.46022
  27. [27] Matos M. C., Absolutely summing holomorphic mappings, An. Acad. Bras. Ciênc., 1996, 68(1), 1–13 Zbl0854.46042
  28. [28] Matos M. C., Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Collect. Math. 2003, 54(2), 111–136 Zbl1078.46031
  29. [29] Mujica J., Complex Analysis in Banach Spaces, Dover Publications, 2010 
  30. [30] Pellegrino D., Santos J., Absolutely summing operators: a panorama, Quaest. Math., 2011, 4, 447–478 http://dx.doi.org/10.2989/16073606.2011.640459 Zbl1274.47001
  31. [31] Pellegrino D., Santos J., Seoane-Sepúlveda J. B., Some techniques on nonlinear analysis and applications, Adv. Math., 2012, 229(2), 1235–1265 http://dx.doi.org/10.1016/j.aim.2011.09.014 Zbl1248.47024
  32. [32] Pellegrino D., Souza M., Fully summing multilinear and holomorphic mappings into Hilbert spaces, Math. Nachr., 2005, 278(7–8), 877–887 http://dx.doi.org/10.1002/mana.200310279 Zbl1080.46030
  33. [33] Pérez-García D., Comparing different classes of absolutely summing multilinear operators, Arch. Math. (Basel), 2005, 85(3), 258–267 http://dx.doi.org/10.1007/s00013-005-1125-4 Zbl1080.47047
  34. [34] Péréz-García D., Villanueva I., A composition theorem for multiple summing operators, Monatsh. Math. 2005, 146, 257–261 http://dx.doi.org/10.1007/s00605-005-0316-1 Zbl1105.46030
  35. [35] Pietsch A., Absolut p-summierende Abbildungen in normierten Räumen, Studia Math., 1967, 28, 333–353 Zbl0156.37903
  36. [36] Pietsch A., Operator ideals, Veb Deutscher Verlag der Wiss., Berlin, 1978; North Holland, 1980 
  37. [37] Pietsch A., Ideals of multilinear functionals, in: Proceedings of the Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-Texte, Leipzig, 1983, 185–199 Zbl0561.47037
  38. [38] Pisier G., Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics 60, American Mathematical Society, Providence, RI, 1986 
  39. [39] Pisier G., Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc., New Ser., 2012, 49(2), 237–323 http://dx.doi.org/10.1090/S0273-0979-2011-01348-9 Zbl1244.46006
  40. [40] Popa D., Multilinear variants of Maurey and Pietsch theorems and applications, J. Math. Anal. Appl., 2010, 368(1), 157–168 http://dx.doi.org/10.1016/j.jmaa.2010.02.019 Zbl1198.47036
  41. [41] Popa D., Multilinear variants of Pietsch’s composition theorem, J. Math. Anal. Appl., 2010, 370(2), 415–430 http://dx.doi.org/10.1016/j.jmaa.2010.05.018 Zbl1196.47019
  42. [42] Popa D., A new distinguishing feature for summing, versus dominated and multiple summing operators, Arch. Math. (Basel), 2011, 96(5), 455–462 http://dx.doi.org/10.1007/s00013-011-0258-x Zbl1228.46041
  43. [43] Popa D., Nuclear multilinear operators with respect to a partition, Rend. Circolo Matematico di Palermo, 2012, 61(3), 307–319 http://dx.doi.org/10.1007/s12215-012-0091-5 
  44. [44] N. Tomczak-Jagermann, Banach-Mazur distances and finite dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Harlow: Longman Scientific & Technical; New York: John Wiley & Sons, Inc., 1989 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.