Lorentzian similarity manifolds

Yoshinobu Kamishima

Open Mathematics (2012)

  • Volume: 10, Issue: 5, page 1771-1788
  • ISSN: 2391-5455

Abstract

top
An (m+2)-dimensional Lorentzian similarity manifold M is an affine flat manifold locally modeled on (G,ℝm+2), where G = ℝm+2 ⋊ (O(m+1, 1)×ℝ+). M is also a conformally flat Lorentzian manifold because G is isomorphic to the stabilizer of the Lorentzian group PO(m+2, 2) of the Lorentz model S m+1,1. We discuss the properties of compact Lorentzian similarity manifolds using developing maps and holonomy representations.

How to cite

top

Yoshinobu Kamishima. "Lorentzian similarity manifolds." Open Mathematics 10.5 (2012): 1771-1788. <http://eudml.org/doc/269359>.

@article{YoshinobuKamishima2012,
abstract = {An (m+2)-dimensional Lorentzian similarity manifold M is an affine flat manifold locally modeled on (G,ℝm+2), where G = ℝm+2 ⋊ (O(m+1, 1)×ℝ+). M is also a conformally flat Lorentzian manifold because G is isomorphic to the stabilizer of the Lorentzian group PO(m+2, 2) of the Lorentz model S m+1,1. We discuss the properties of compact Lorentzian similarity manifolds using developing maps and holonomy representations.},
author = {Yoshinobu Kamishima},
journal = {Open Mathematics},
keywords = {Lorentzian similarity structure; Conformally flat Lorentzian structure; Uniformization; Holonomy group; Developing map; Lorentzian similarity manifold; Lorentzian flat space form; Fefferman-Lorentz manifold; developing map; holonomy representation},
language = {eng},
number = {5},
pages = {1771-1788},
title = {Lorentzian similarity manifolds},
url = {http://eudml.org/doc/269359},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Yoshinobu Kamishima
TI - Lorentzian similarity manifolds
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1771
EP - 1788
AB - An (m+2)-dimensional Lorentzian similarity manifold M is an affine flat manifold locally modeled on (G,ℝm+2), where G = ℝm+2 ⋊ (O(m+1, 1)×ℝ+). M is also a conformally flat Lorentzian manifold because G is isomorphic to the stabilizer of the Lorentzian group PO(m+2, 2) of the Lorentz model S m+1,1. We discuss the properties of compact Lorentzian similarity manifolds using developing maps and holonomy representations.
LA - eng
KW - Lorentzian similarity structure; Conformally flat Lorentzian structure; Uniformization; Holonomy group; Developing map; Lorentzian similarity manifold; Lorentzian flat space form; Fefferman-Lorentz manifold; developing map; holonomy representation
UR - http://eudml.org/doc/269359
ER -

References

top
  1. [1] Aristide T., Closed similarity Lorentzian affine manifolds, Proc. Amer. Math. Soc., 2004, 132(12), 3697–3702 http://dx.doi.org/10.1090/S0002-9939-04-07560-4 Zbl1056.53017
  2. [2] Barbot T., Charette V., Drumm T., Goldman W., Melnick K., A primer on the (2+1) Einstein universe, In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society, Zürich, 2008, 179–229 Zbl1154.53047
  3. [3] Baues O., Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology, 2004, 43(4), 903–924 http://dx.doi.org/10.1016/S0040-9383(03)00083-1 Zbl1059.57022
  4. [4] Carrière Y., Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., 1989, 95(3), 615–628 http://dx.doi.org/10.1007/BF01393894 Zbl0682.53051
  5. [5] Carrière Y., Dal’bo F., Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques, Enseign. Math., 1989, 35(3–4), 245–262 
  6. [6] Charette V., Drumm T.A., Goldman W.M., Affine deformations of a three-holed sphere, Geom. Topol., 2010, 14(3), 1355–1382 http://dx.doi.org/10.2140/gt.2010.14.1355 Zbl1202.57001
  7. [7] Chen S.S., Greenberg L., Hyperbolic spaces, In: Contributions to Analysis, Academic Press, New York-London, 1974, 49–87 
  8. [8] Fefferman C., Parabolic invariant theory in complex analysis, Adv. in Math., 1979, 31(2), 131–262 http://dx.doi.org/10.1016/0001-8708(79)90025-2 
  9. [9] Fried D., Closed similarity manifolds, Comment. Math. Helv., 1980, 55(4), 576–582 http://dx.doi.org/10.1007/BF02566707 Zbl0455.57005
  10. [10] Fried D., Flat spacetimes, J. Differential Geom., 1987, 26(3), 385–396 Zbl0643.53047
  11. [11] Fried D., Goldman W.M., Three-dimensional affine crystallographic groups, Adv. in Math., 1983, 47(1), 1–49 http://dx.doi.org/10.1016/0001-8708(83)90053-1 Zbl0571.57030
  12. [12] Goldman W.M., Kamishima Y., The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geom., 1984, 19(1), 233–240 Zbl0546.53039
  13. [13] Goldman W.M., Labourie F., Margulis G., Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math., 2009, 170(3), 1051–1083 http://dx.doi.org/10.4007/annals.2009.170.1051 Zbl1193.57001
  14. [14] Grunewald F., Segal D., On affine crystallographic groups, J. Differential Geom., 1994, 40(3), 563–594 Zbl0822.20050
  15. [15] Kamishima Y., Conformally flat manifolds whose development maps are not surjective. I, Trans. Amer. Math. Soc., 1986, 294(2), 607–623 http://dx.doi.org/10.1090/S0002-9947-1986-0825725-2 Zbl0608.53036
  16. [16] Kamishima Y., Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields, J. Differential Geom., 1993, 37(3), 569–601 Zbl0792.53061
  17. [17] Kamishima Y., Nondegenerate conformal structures, CR structures and quaternionic CR structures on manifolds, In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theor. Phys., 16, European Mathematical Society, Zürich, 2010, 863–893 http://dx.doi.org/10.4171/079-1/24 Zbl1208.53039
  18. [18] Kamishima Y., Conformally Lorentz parabolic structure and Fefferman Lorentz metrics, preprint available at http://arxiv.org/abs/0911.0867 
  19. [19] Koszul J.-L., Lectures on Groups of Transformations, Tata Inst. Fundam. Res. Lect. Math., 32, Tata Institute of Fundamental Research, Bombay, 1965 
  20. [20] Kulkarni R.S., Groups with domains of discontinuity, Math. Ann., 1978, 237(3), 253–272 http://dx.doi.org/10.1007/BF01420180 Zbl0369.20028
  21. [21] Kulkarni R.S., Pinkall U., Uniformization of geometric structures with applications to conformal geometry, In: Differential Geomtery, Peñíscola, June 2–9, 1985, Lecture Notes in Math., 1209, Springer, Berlin, 1986, 190–209 http://dx.doi.org/10.1007/BFb0076632 
  22. [22] Lee K.B., Raymond F., Seifert Fiberings, Math. Surveys Monogr., 166, American Mathematical Society, Providence, 2010 
  23. [23] Mess G., Lorentz spacetimes of constant curvature, Geom. Dedicata, 2007, 126, 3–45 http://dx.doi.org/10.1007/s10711-007-9155-7 
  24. [24] Milnor J., On fundamental groups of complete affinely flat manifolds, Adv. in Math., 1977, 25(2), 178–187 http://dx.doi.org/10.1016/0001-8708(77)90004-4 
  25. [25] Raghunathan M.S., Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb., 68, Springer, New York-Heidelberg, 1972 Zbl0254.22005
  26. [26] Wall C.T.C., Geometric structures on compact complex analytic surfaces, Topology, 1986, 25(2), 119–153 http://dx.doi.org/10.1016/0040-9383(86)90035-2 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.