Equational spectrum of Hilbert varieties
R. Padmanabhan; Sergiu Rudeanu
Open Mathematics (2009)
- Volume: 7, Issue: 1, page 66-72
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Abbott J.C., Implicational algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1967, 11(59), 3–23
- [2] Abbott J.C., Semi-Boolean algebra, Mat. Vesnik, 1967, 4(19), 177–198
- [3] Buşneag D., Contribuţii la studiul algebrelor Hilbert, PhD thesis, University of Bucharest, Romania, 1985 (in Romanian)
- [4] Buşneag D., Categories of algebraic logic, Editura Academiei Romane, Bucharest, 2006 Zbl05191994
- [5] Cornish W.H., Two-based definitions of bounded commutative BCK-algebras, Math. Sem. Notes Kobe Univ., 1983, 11(1), 9–15 Zbl0553.03044
- [6] Diego A., Sobre algebras de Hilbert, PhD thesis, University of Buenos Aires, 1961
- [7] Diego A., Sur les algèbres de Hilbert, Collection de Logique Mathématique, Sér. A, Fasc. XXI Gauthier-Villars, Paris, E. Nauwelaerts, Louvain, 1966
- [8] Henkin L., An algebraic characterization of quantifiers, Fund. Math., 1950, 37, 63–74 Zbl0041.34804
- [9] Iorgulescu A., Algebras of logic as BCK-algebras, ASE, Bucharest, 2008 Zbl1172.03038
- [10] McNulty G., Minimum bases for equational theories of groups and rings, Ann. Pure Appl. Logic, 2004, 127, 131–153 http://dx.doi.org/10.1016/j.apal.2003.11.012[Crossref] Zbl1049.03027
- [11] Padmanabhan R., Rudeanu S., Axioms for lattices and Boolean algebras, World Scientific, Singapore, 2008 Zbl1158.06001
- [12] Pałasiński M., Wożniakowska B., An equational basis for commutative BCK-algebras, Math. Sem. Notes Kobe Univ., 1982, 10, 175–178 Zbl0504.03029
- [13] Rasiowa H., An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics 78, North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1974
- [14] Tarski A., Equational logic and equational theories of algebras, Contributions to Math. Logic (Colloquium, Hannover, 1966), North-Holland, Amsterdam 1968, 275–288
- [15] Yutani H., The class of commutative BCK-algebras is equationally definable, Math. Sem. Notes Kobe Univ., 1977, 5, 207–210 Zbl0373.02045