Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations

Jing Li; Jingxue Yin; Chunhua Jin

Open Mathematics (2011)

  • Volume: 9, Issue: 6, page 1435-1447
  • ISSN: 2391-5455

Abstract

top
This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources.

How to cite

top

Jing Li, Jingxue Yin, and Chunhua Jin. "Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations." Open Mathematics 9.6 (2011): 1435-1447. <http://eudml.org/doc/269371>.

@article{JingLi2011,
abstract = {This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources.},
author = {Jing Li, Jingxue Yin, Chunhua Jin},
journal = {Open Mathematics},
keywords = {Fully nonlinear; Degenerate; Parabolic; Blow-up; Global existence; limit solutions; nontrivial solutions},
language = {eng},
number = {6},
pages = {1435-1447},
title = {Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations},
url = {http://eudml.org/doc/269371},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Jing Li
AU - Jingxue Yin
AU - Chunhua Jin
TI - Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1435
EP - 1447
AB - This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources.
LA - eng
KW - Fully nonlinear; Degenerate; Parabolic; Blow-up; Global existence; limit solutions; nontrivial solutions
UR - http://eudml.org/doc/269371
ER -

References

top
  1. [1] Allen L.J.S., Persistence and extinction in single-species reaction-diffusion models, Bull. Math. Biol., 1983, 45(2), 209–277 Zbl0543.92020
  2. [2] Angenent S., On the formation of singularities in the curve shortening flow, J. Differential Geom., 1991, 33(3), 601–633 Zbl0731.53002
  3. [3] Deng K., Levine H.A., The role of critical exponents in blow-up theorems the sequel, J. Math. Anal. Appl., 2000, 243(1), 85–126 http://dx.doi.org/10.1006/jmaa.1999.6663 
  4. [4] Duvaut G., Lions J.-L., Les Inéquations en Mécanique et en Physique, Travaux et Recherches Mathématiques, 21, Dunod, Paris, 1972 Zbl0298.73001
  5. [5] Epstein C.L., Weinstein M.I., A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math., 1987, 40(1), 119–139 http://dx.doi.org/10.1002/cpa.3160400106 Zbl0602.34026
  6. [6] Fujita H., On the blowing up of solutions of the Cauchy problem for u t = Δu+u1+u 1+α , J. Fac. Sci. Univ. Tokyo Sect. I, 1966, 13, 109–124 
  7. [7] Galaktionov V.A., Blow-up for quasilinear heat equations with critical Fujita’s exponents, Proc. Roy. Soc. Edinburgh Sect. A, 1994, 124(3), 517–525 Zbl0808.35053
  8. [8] Galaktionov V.A., Kurdjumov S.P., Mihaĭlov A.P., Samarskiĭ A.A., On unbounded solutions of the Cauchy problem for the parabolic equation u t = ∇(u σ∇u) + u β, Dokl. Akad. Nauk SSSR, 1980, 252(6), 1362–1364 (in Russian) 
  9. [9] Galaktionov V.A., Levine H.A., A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 1998, 34(7), 1005–1027 http://dx.doi.org/10.1016/S0362-546X(97)00716-5 Zbl1139.35317
  10. [10] Galaktionov V.A., Pohozaev S.I., Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators, J. Evol. Equ., 2006, 6(1), 45–69 http://dx.doi.org/10.1007/s00028-005-0213-z Zbl1109.35015
  11. [11] Levine H.A., The role of critical exponents in blowup theorems, SIAM Rev., 1990, 32(2), 262–288 http://dx.doi.org/10.1137/1032046 Zbl0706.35008
  12. [12] Li J., Yin J., Jin C., On the existence of nonnegative continuous solutions for a class of fully nonlinear degenerate parabolic equations, Z. Angew. Math. Phys., 2010, 61(5), 835–847 http://dx.doi.org/10.1007/s00033-010-0059-2 Zbl1242.35152
  13. [13] Lions P.-L., Some problems related to the Bellman-Dirichlet equation for two operators, Comm. Partial Differential Equations, 1980, 5(7), 753–771 http://dx.doi.org/10.1080/03605308008820153 Zbl0435.35035
  14. [14] Low B.C., Resistive diffusion of force-free magnetic fields in a passive medium, Astrophys. J., 1973, 181, 209–226 http://dx.doi.org/10.1086/152042 
  15. [15] Low B.C., Resistive diffusion of force-free magnetic fields in a passive medium. II. A nonlinear analysis of the one-dimensional case, Astrophys. J., 1973, 184, 917–929 http://dx.doi.org/10.1086/152382 
  16. [16] Mitidieri E., Pohozaev S.I., A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 2001, 3(234), 1–362 Zbl1074.35500
  17. [17] Ughi M., A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl., 1986, 143, 385–400 http://dx.doi.org/10.1007/BF01769226 Zbl0617.35066
  18. [18] Wang L., On the regularity theory of fully nonlinear parabolic equations, Bull. Amer. Math. Soc. (N.S.), 1990, 22(1), 107–114 http://dx.doi.org/10.1090/S0273-0979-1990-15854-9 Zbl0704.35025
  19. [19] Winkler M., A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 2002, 25(11), 911–925 http://dx.doi.org/10.1002/mma.319 Zbl1007.35043
  20. [20] Yin J., Li J., Jin C., Classical solutions for a class of fully nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 2009, 360(1), 119–129 http://dx.doi.org/10.1016/j.jmaa.2009.06.038 Zbl1173.35567

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.