Separable K-linear categories
Open Mathematics (2010)
- Volume: 8, Issue: 2, page 274-281
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndrei Chiteș, and Costel Chiteș. "Separable K-linear categories." Open Mathematics 8.2 (2010): 274-281. <http://eudml.org/doc/269374>.
@article{AndreiChiteș2010,
abstract = {We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.},
author = {Andrei Chiteș, Costel Chiteș},
journal = {Open Mathematics},
keywords = {K-linear category; Hochschild-Mitchell cohomology; Separable K-linear category; -linear category; separable -linear category},
language = {eng},
number = {2},
pages = {274-281},
title = {Separable K-linear categories},
url = {http://eudml.org/doc/269374},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Andrei Chiteș
AU - Costel Chiteș
TI - Separable K-linear categories
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 274
EP - 281
AB - We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.
LA - eng
KW - K-linear category; Hochschild-Mitchell cohomology; Separable K-linear category; -linear category; separable -linear category
UR - http://eudml.org/doc/269374
ER -
References
top- [1] Ardizzoni A., Menini C., Ştefan D., Hochschild cohomology and “smoothness” in monoidal categories, J. Pure Appl. Algebra, 2007, 208, 297–330 http://dx.doi.org/10.1016/j.jpaa.2005.12.003 Zbl1116.18004
- [2] Mitchell B., Rings with several objects, Adv. Math., 1972, 8, 1–161 http://dx.doi.org/10.1016/0001-8708(72)90002-3
- [3] Mitchell B., Theory of categories, Academic PressInc., New York, 1965
- [4] McCarthy R., The cyclichomology of anexact category, J. Pure Appl. Algebra, 1994, 93, 251–296 http://dx.doi.org/10.1016/0022-4049(94)90091-4
- [5] Herscovich E., Solotar A., Hochschild-Mitchell cohomology and Galois extensions, J. Pure Appl. Algebra, 2007, 209, 37–55 http://dx.doi.org/10.1016/j.jpaa.2006.05.012 Zbl1118.16012
- [6] Weibel C.A., An introduction to homological algebra, Cambridge University Press, Cambridge, 1995
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.