On Galilean connections and the first jet bundle
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1889-1895
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJames Grant, and Bradley Lackey. "On Galilean connections and the first jet bundle." Open Mathematics 10.5 (2012): 1889-1895. <http://eudml.org/doc/269376>.
@article{JamesGrant2012,
abstract = {We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces “laboratory” coordinate systems, and the geodesic equations in this coordinates form a system of second-order ordinary differential equations. We then show the converse - the “fundamental theorem” - that given such a coordinate system, and a system of second order ordinary differential equations, there exists regular Cartan connections yielding these, and such connections are completely determined by their torsion.},
author = {James Grant, Bradley Lackey},
journal = {Open Mathematics},
keywords = {Galilean group; Cartan connections; Jet bundles; 2nd order ODE; jet bundles},
language = {eng},
number = {5},
pages = {1889-1895},
title = {On Galilean connections and the first jet bundle},
url = {http://eudml.org/doc/269376},
volume = {10},
year = {2012},
}
TY - JOUR
AU - James Grant
AU - Bradley Lackey
TI - On Galilean connections and the first jet bundle
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1889
EP - 1895
AB - We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces “laboratory” coordinate systems, and the geodesic equations in this coordinates form a system of second-order ordinary differential equations. We then show the converse - the “fundamental theorem” - that given such a coordinate system, and a system of second order ordinary differential equations, there exists regular Cartan connections yielding these, and such connections are completely determined by their torsion.
LA - eng
KW - Galilean group; Cartan connections; Jet bundles; 2nd order ODE; jet bundles
UR - http://eudml.org/doc/269376
ER -
References
top- [1] Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Annals of Math., 2001, 154(1), 97–113 http://dx.doi.org/10.2307/3062111
- [2] Cartan É., Sur les variétés à connexion projective, Bull. Soc. Math. France, 1924, 52, 205–241 Zbl50.0500.02
- [3] Cartan É., Observations sur le mémoire précédent, Math. Z., 1933, 37(1), 619–622 http://dx.doi.org/10.1007/BF01474603 Zbl0007.23101
- [4] Chern S.-S., Sur la géométrie d’un système d’équations différentielles du second ordre, Bull. Sci. Math., 1939, 63, 206–212 Zbl65.1419.01
- [5] Doubrov B., Komrakov B., Morimoto T., Equivalence of holonomic differential equations, Lobachevskii J. Math., 1999, 3, 39–71 Zbl0937.37051
- [6] Kamran N., Lamb K.G., Shadwick W.F., The local equivalence problem for d 2y/dx 2 = F(x; y; dy/dx) and the Painlevé transcendents, J. Differential Geom., 1985, 22(2), 139–150 Zbl0594.34034
- [7] Kosambi D.D., Parallelism and path-spaces, Math. Z., 1933, 37(1), 608–618 http://dx.doi.org/10.1007/BF01474602 Zbl0007.23004
- [8] Kosambi D.D., Systems of differential equations of the second order, Quart. J. Math. Oxford Ser., 1935, 6, 1–12 http://dx.doi.org/10.1093/qmath/os-6.1.1 Zbl0011.08203
- [9] Lackey B., Metric equivalence of path spaces, Nonlinear Studies, 2002, 7(2), 241–250 Zbl1001.53008
- [10] Lie S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891 Zbl43.0373.01
- [11] Saunders D.J., The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser., 142, Cambridge University Press, Cambridge, 1989 http://dx.doi.org/10.1017/CBO9780511526411 Zbl0665.58002
- [12] Sharpe R.W., Differential Geometry, Grad. Texts in Math., 166, Springer, New York, 1997
- [13] Tresse A., Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre y″ = ω(x; y; y′), Hirzel, Leipzig, 1896 Zbl27.0254.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.