# A trichotomy result for non-autonomous rational difference equations

Frank Palladino; Michael Radin

Open Mathematics (2011)

- Volume: 9, Issue: 5, page 1135-1142
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topFrank Palladino, and Michael Radin. "A trichotomy result for non-autonomous rational difference equations." Open Mathematics 9.5 (2011): 1135-1142. <http://eudml.org/doc/269377>.

@article{FrankPalladino2011,

abstract = {We study non-autonomous rational difference equations. Under the assumption of a periodic non-autonomous parameter, we show that a well known trichotomy result in the autonomous case is preserved in a certain sense which is made precise in the body of the text. In addition we discuss some questions regarding whether periodicity preserves or destroys boundedness.},

author = {Frank Palladino, Michael Radin},

journal = {Open Mathematics},

keywords = {Difference equation; Trichotomy; Non-autonomous; Periodic convergence; Global asymptotic stability; rational difference equation; periodic coefficients; asymptotic behaviour},

language = {eng},

number = {5},

pages = {1135-1142},

title = {A trichotomy result for non-autonomous rational difference equations},

url = {http://eudml.org/doc/269377},

volume = {9},

year = {2011},

}

TY - JOUR

AU - Frank Palladino

AU - Michael Radin

TI - A trichotomy result for non-autonomous rational difference equations

JO - Open Mathematics

PY - 2011

VL - 9

IS - 5

SP - 1135

EP - 1142

AB - We study non-autonomous rational difference equations. Under the assumption of a periodic non-autonomous parameter, we show that a well known trichotomy result in the autonomous case is preserved in a certain sense which is made precise in the body of the text. In addition we discuss some questions regarding whether periodicity preserves or destroys boundedness.

LA - eng

KW - Difference equation; Trichotomy; Non-autonomous; Periodic convergence; Global asymptotic stability; rational difference equation; periodic coefficients; asymptotic behaviour

UR - http://eudml.org/doc/269377

ER -

## References

top- [1] Camouzis E., Ladas G., When does periodicity destroy boundedness in rational equations?, J. Difference Equ. Appl., 2006, 12(9), 961–979 http://dx.doi.org/10.1080/10236190600822369 Zbl1112.39003
- [2] Camouzis E., Ladas G., Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Adv. Discrete Math. Appl., 5, Chapman & Hall/CRC Press, Boca Raton, 2007 http://dx.doi.org/10.1201/9781584887669 Zbl1129.39002
- [3] Cushing J.M., Henson S.M., A periodically forced Beverton-Holt equation, J. Difference Equ. Appl., 2002, 8(12), 1119–1120 http://dx.doi.org/10.1080/1023619021000053980 Zbl1023.39013
- [4] Elaydi S., Sacker R.J., Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Equ. Appl., 2005, 11(4–5), 337–346 http://dx.doi.org/10.1080/10236190412331335418 Zbl1084.39005
- [5] El-Metwally H.A., Grove E.A., Ladas G., A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 2000, 245(1), 161–170 http://dx.doi.org/10.1006/jmaa.2000.6747 Zbl0971.39004
- [6] Grove E.A., Kostrov Y., Ladas G., Schultz S.W., Riccati difference equations with real period-2 coefficients, Comm. Appl. Nonlinear Anal., 2007, 14(2), 33–56 Zbl1126.39001
- [7] Grove E.A., Ladas G., Periodicities in Nonlinear Difference Equations, Adv. Discrete Math. Appl., 4, Chapman & Hall/CRC Press, Boca Raton, 2005 Zbl1078.39009
- [8] Grove E.A., Ladas G., Predescu M., Radin M., On the global character of the difference equation ${x}_{n+1}=\frac{\alpha +\gamma {x}_{n}-(2k+1)+\delta {x}_{n-2l}}{A+{x}_{n-2l}}$ , J. Difference Equ. Appl., 2003, 9(2), 171–199 http://dx.doi.org/10.1080/1023619021000054015 Zbl1038.39004
- [9] Karakostas G.L., Stević S., On the recursive sequence ${x}_{n+1}=B+\frac{{x}_{n-k}}{{a}_{0}{x}_{n}+\cdots +{a}_{k-1}{x}_{n-k+1}+\gamma}$ , J. Difference Equ. Appl., 2004, 10(9), 809–815 http://dx.doi.org/10.1080/10236190410001659732 Zbl1068.39012
- [10] Kocić V.L., Ladas G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Math. Appl., 256, Kluwer, Dordrecht, 1993 Zbl0787.39001
- [11] Kulenovic M.R.S., Merino O., Stability analysis of Pielou’s equation with period-two coefficient, J. Difference Equ. Appl., 2007, 13(5), 383–406 http://dx.doi.org/10.1080/10236190601045929 Zbl1123.39004
- [12] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1(1), 91–100 http://dx.doi.org/10.2140/involve.2008.1.91 Zbl1154.39012
- [13] Palladino F.J., On the characterization of rational difference equations, J. Difference Equ. Appl., 2009, 15(3), 253–260 http://dx.doi.org/10.1080/10236190802119903 Zbl1169.39005
- [14] Palladino F.J., On periodic trichotomies, J. Difference Equ. Appl., 2009, 15(6), 605–620 http://dx.doi.org/10.1080/10236190802258677 Zbl1207.39018
- [15] Stevic S., Behavior of the positive solutions of the generalized Beddington-Holt equation, Panamer. Math. J., 2000, 10(4), 77–85 Zbl1039.39005
- [16] Stevic S., On the recursive sequence x n+1 = α n + x n−1/x n. II, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2003, 10(6), 911–916
- [17] Stevic S., A short proof of the Cushing-Henson conjecture, Discrete Dyn. Nat. Soc., 2006, ID 37264 Zbl1149.39300
- [18] Stevic S., On positive solutions of a (k + 1)th order difference equation, Appl. Math. Lett., 2006, 19(5), 427–431 http://dx.doi.org/10.1016/j.aml.2005.05.014 Zbl1095.39010

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.