Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections
Julien Keller; Christina Tønnesen-Friedman
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1673-1687
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJulien Keller, and Christina Tønnesen-Friedman. "Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections." Open Mathematics 10.5 (2012): 1673-1687. <http://eudml.org/doc/269378>.
@article{JulienKeller2012,
abstract = {We provide nontrivial examples of solutions to the system of coupled equations introduced by M. García-Fernández for the uniformization problem of a triple (M; L; E), where E is a holomorphic vector bundle over a polarized complex manifold (M, L), generalizing the notions of both constant scalar curvature Kähler metric and Hermitian-Einstein metric.},
author = {Julien Keller, Christina Tønnesen-Friedman},
journal = {Open Mathematics},
keywords = {Scalar curvature; Projective bundle; Kähler manifold; Polarization; Stability; Coupled equations; Moment map; Ruled manifold; polarization; moment map; coupled equations; ruled manifold},
language = {eng},
number = {5},
pages = {1673-1687},
title = {Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections},
url = {http://eudml.org/doc/269378},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Julien Keller
AU - Christina Tønnesen-Friedman
TI - Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections
JO - Open Mathematics
PY - 2012
VL - 10
IS - 5
SP - 1673
EP - 1687
AB - We provide nontrivial examples of solutions to the system of coupled equations introduced by M. García-Fernández for the uniformization problem of a triple (M; L; E), where E is a holomorphic vector bundle over a polarized complex manifold (M, L), generalizing the notions of both constant scalar curvature Kähler metric and Hermitian-Einstein metric.
LA - eng
KW - Scalar curvature; Projective bundle; Kähler manifold; Polarization; Stability; Coupled equations; Moment map; Ruled manifold; polarization; moment map; coupled equations; ruled manifold
UR - http://eudml.org/doc/269378
ER -
References
top- [1] Alvarez-Consul L., Garcia-Fernandez M., Garcia-Prada O., Coupled equations for Kähler metrics and Yang-Mills connections, preprint available at http://arxiv.org/abs/1102.0991 Zbl1275.32019
- [2] Apostolov V., Calderbank D.M.J., Gauduchon P., Hamiltonian 2-forms in Kähler geometry I. General theory, J. Differential Geom., 2006, 73(3), 359–412 Zbl1101.53041
- [3] Apostolov V., Calderbank D.M.J., Gauduchon P., Tønnesen-Friedman C.W., Hamiltonian 2-forms in Kähler geometry II. Global classification, J. Differential Geom., 2004, 68(2), 277–345 Zbl1079.32012
- [4] Apostolov V., Calderbank D.M.J., Gauduchon P., Tønnesen-Friedman C.W., Hamiltonian 2-forms in Kähler geometry III. Extremal metrics and stability, Invent. Math., 2008, 173(3), 547–601 http://dx.doi.org/10.1007/s00222-008-0126-x Zbl1145.53055
- [5] Apostolov V., Tønnesen-Friedman C., A remark on Kähler metrics of constant scalar curvature on ruled complex surfaces, Bull. London Math. Soc., 2006, 38(3), 494–500 http://dx.doi.org/10.1112/S0024609306018480 Zbl1122.53042
- [6] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, Berlin, 1987
- [7] Donaldson S.K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196, American Mathematical Society, Providence, 1999, 13–33 Zbl0972.53025
- [8] Donaldson S.K., Kronheimer P.B., The Geometry of Four-Manifolds, Oxford Math. Monogr., Clarendon Press/Oxford University Press, New York, 1990 Zbl0820.57002
- [9] Fujiki A., Remarks on extremal Kähler metrics on ruled manifolds, Nagoya Math. J., 1992, 126, 89–101 Zbl0772.53044
- [10] Garcia-Fernandez M., Coupled Equations for Kähler Metrics and Yang-Mills Connections, PhD thesis, Universidad Autónoma de Madrid, Madrid, 2009, preprint available at http://arxiv.org/abs/1102.0985
- [11] Guan D., Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends, Trans. Amer. Math. Soc., 1995, 347(6), 2255–2262 Zbl0853.53047
- [12] Guan D., On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett., 1999, 6(5–6), 547–555 Zbl0968.53050
- [13] Guan D., Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one. III, Internat. J. Math., 2003, 14(3), 259–287 http://dx.doi.org/10.1142/S0129167X03001806 Zbl1048.32014
- [14] Koiso N., Sakane Y., Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds, In: Curvature and Topology of Riemannian Manifolds, Katata, August 26–31, 1985, Lecture Notes in Math., 1201, Springer, Berlin, 1986, 165–179 http://dx.doi.org/10.1007/BFb0075654
- [15] Tønnesen-Friedman C.W., Extremal Kähler metrics on minimal ruled surfaces, J. Reine Angew. Math., 1998, 502, 175–197 http://dx.doi.org/10.1515/crll.1998.086 Zbl0921.53033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.