# On Galois cohomology and realizability of 2-groups as Galois groups

Open Mathematics (2011)

- Volume: 9, Issue: 2, page 403-419
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topIvo Michailov. "On Galois cohomology and realizability of 2-groups as Galois groups." Open Mathematics 9.2 (2011): 403-419. <http://eudml.org/doc/269379>.

@article{IvoMichailov2011,

abstract = {In this paper we develop some new theoretical criteria for the realizability of p-groups as Galois groups over arbitrary fields. We provide necessary and sufficient conditions for the realizability of 14 of the 22 non-abelian 2-groups having a cyclic subgroup of index 4 that are not direct products of groups.},

author = {Ivo Michailov},

journal = {Open Mathematics},

keywords = {Embedding problem; Galois extension; Quaternion algebra; Obstruction; Corestriction; quaternion algebra; obstruction; corestriction; -groups},

language = {eng},

number = {2},

pages = {403-419},

title = {On Galois cohomology and realizability of 2-groups as Galois groups},

url = {http://eudml.org/doc/269379},

volume = {9},

year = {2011},

}

TY - JOUR

AU - Ivo Michailov

TI - On Galois cohomology and realizability of 2-groups as Galois groups

JO - Open Mathematics

PY - 2011

VL - 9

IS - 2

SP - 403

EP - 419

AB - In this paper we develop some new theoretical criteria for the realizability of p-groups as Galois groups over arbitrary fields. We provide necessary and sufficient conditions for the realizability of 14 of the 22 non-abelian 2-groups having a cyclic subgroup of index 4 that are not direct products of groups.

LA - eng

KW - Embedding problem; Galois extension; Quaternion algebra; Obstruction; Corestriction; quaternion algebra; obstruction; corestriction; -groups

UR - http://eudml.org/doc/269379

ER -

## References

top- [1] Bechtell H., The Theory of Groups, Addison-Wesley, Reading-London-Don Mills, 1971
- [2] Fröhlich A., Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math., 1985, 360, 84–123 Zbl0556.12005
- [3] Grundman H.G., Smith T.L., Realizability and automatic realizability of Galois groups of order 32, Cent. Eur. J. Math., 2010, 8(2), 244–260 http://dx.doi.org/10.2478/s11533-009-0072-x Zbl1256.12002
- [4] Grundman H.G., Smith T.L., Galois realizability of groups of order 64, Cent. Eur. J. Math., 2010, 8(5), 846–854 http://dx.doi.org/10.2478/s11533-010-0052-1 Zbl1256.12003
- [5] Ishkhanov V.V., Lur’e B.B., Faddeev D.K., The Embedding Problem in Galois Theory, Transl. Math. Monogr., 165, American Mathematical Society, Providence, 1997
- [6] Jacobson N., Basic Algebra II, 2nd ed., W.H. Freeman and Company, New York, 1989
- [7] Kiming I., Explicit classifications of some 2-extensions of a field of characteristic different from 2, Canad. J. Math., 1990, 42(5), 825–855 http://dx.doi.org/10.4153/CJM-1990-043-6 Zbl0725.12004
- [8] Ledet A., On 2-groups as Galois groups, Canad. J. Math., 1995, 47(6), 1253–1273 http://dx.doi.org/10.4153/CJM-1995-064-3 Zbl0849.12006
- [9] Ledet A., Embedding problems with cyclic kernel of order 4, Israel J. Math., 1998, 106(1), 109–131 http://dx.doi.org/10.1007/BF02773463 Zbl0913.12004
- [10] Ledet A., Brauer Type Embedding Problems, Fields Inst. Monogr., 21, American Mathematical Society, Providence, 2005 Zbl1064.12003
- [11] Michailov I.M., Embedding obstructions for the dihedral, semidihedral, and quaternion 2-groups, J. Algebra, 2001, 245(1), 355–369 http://dx.doi.org/10.1006/jabr.2001.8926 Zbl0998.12004
- [12] Michailov I.M., Embedding obstructions for the cyclic and modular 2-groups, Math. Balkanica (N.S.), 2007, 21(1–2), 31–50 Zbl1219.12006
- [13] Michailov I.M., Four non-abelian groups of order p 4 as Galois groups, J. Algebra, 2007, 307(1), 287–299 http://dx.doi.org/10.1016/j.jalgebra.2006.05.021 Zbl1171.12004
- [14] Michailov I.M., Groups of order 32 as Galois groups, Serdica Math. J., 2007, 33(1), 1–34 Zbl1199.12007
- [15] Michailov I.M., Induced orthogonal representations of Galois groups, J. Algebra, 2009, 322(10), 3713–3732 http://dx.doi.org/10.1016/j.jalgebra.2009.07.035 Zbl1216.12005
- [16] Michailov I.M., Ziapkov N.P., Embedding obstructions for the generalized quaternion group, J. Algebra, 2000, 226(1), 375–389 http://dx.doi.org/10.1006/jabr.1999.8190 Zbl0973.12003
- [17] Ninomiya Y., Finite p-groups with cyclic subgroups of index p 2, Math. J. Okayama Univ., 1994, 36, 1–21 Zbl0838.20017
- [18] Riehm C., The corestriction of algebraic structures, Invent. Math., 1970, 11(1), 73–98 http://dx.doi.org/10.1007/BF01389807 Zbl0199.34904
- [19] Scharlau W., Quadratic and Hermitian Forms, Grundlehren Math.Wiss., 270, Springer, Berlin, 1985 Zbl0584.10010
- [20] Serre J.-P., Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer, Berlin-Heidelberg-New York, 1964
- [21] Swallow J.R., Thiem F.N., Quadratic corestriction, C 2-embedding problems, and explicit construction, Comm. Algebra, 2002, 30(7), 3227–3258 http://dx.doi.org/10.1081/AGB-120004485 Zbl1019.12001
- [22] Tignol J.-P., On the corestriction of central simple algebras, Math. Z., 1987, 194(2), 267–274 http://dx.doi.org/10.1007/BF01161974 Zbl0595.16012
- [23] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10, 2007, http://www.gap-system.org

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.