An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial

Hideaki Ishikawa; Kohji Matsumoto

Open Mathematics (2011)

  • Volume: 9, Issue: 1, page 102-126
  • ISSN: 2391-5455

Abstract

top
We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.

How to cite

top

Hideaki Ishikawa, and Kohji Matsumoto. "An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial." Open Mathematics 9.1 (2011): 102-126. <http://eudml.org/doc/269380>.

@article{HideakiIshikawa2011,
abstract = {We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.},
author = {Hideaki Ishikawa, Kohji Matsumoto},
journal = {Open Mathematics},
keywords = {Riemann zeta-function; Dirichlet polynomial; Atkinson formula},
language = {eng},
number = {1},
pages = {102-126},
title = {An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial},
url = {http://eudml.org/doc/269380},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Hideaki Ishikawa
AU - Kohji Matsumoto
TI - An explicit formula of Atkinson type for the product of the Riemann zeta-function and a Dirichlet polynomial
JO - Open Mathematics
PY - 2011
VL - 9
IS - 1
SP - 102
EP - 126
AB - We prove an explicit formula of Atkinson type for the error term in the asymptotic formula for the mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. To deal with the case when coefficients of the Dirichlet polynomial are complex, we apply the idea of the first author in his study on mean values of Dirichlet L-functions.
LA - eng
KW - Riemann zeta-function; Dirichlet polynomial; Atkinson formula
UR - http://eudml.org/doc/269380
ER -

References

top
  1. [1] Atkinson F.V., The mean-value of the Riemann zeta function, Acta Math., 1949, 81(1), 353–376 http://dx.doi.org/10.1007/BF02395027 Zbl0036.18603
  2. [2] Balasubramanian R., Conrey J.B., Heath-Brown D.R., Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial, J. Reine Angew. Math., 1985, 357, 161–181 Zbl0549.10030
  3. [3] Hafner J.L., Ivić A., On the mean-square of the Riemann zeta-function on the critical line, J. Number Theory, 1989, 32(2), 151–191 http://dx.doi.org/10.1016/0022-314X(89)90024-3 
  4. [4] Heath-Brown D.R., The mean value theorem for the Riemann zeta-function, Mathematika, 1978, 25(2), 177–184 http://dx.doi.org/10.1112/S0025579300009414 Zbl0387.10023
  5. [5] Ishikawa H., A difference between the values of |L(1/2 + it, χ j)| and |L(1/2 + it, χ k)|. I, Comment. Math. Univ. St. Pauli, 2006, 55(1), 41–66 
  6. [6] Ishikawa H., A difference between the values of |L(1/2 + it, χ j)| and |L(1/2 + it, χk)|. II, Comment. Math. Univ. St. Pauli, 2007, 56(1), 1–9 
  7. [7] Ivić A., The Riemann Zeta-Function, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985 Zbl0556.10026
  8. [8] Ivić A., Lectures on Mean Values of the Riemann Zeta Function, Tata Inst. Fund. Res. Lectures on Math. and Phys., 82, Springer, Berlin, 1991 Zbl0758.11036
  9. [9] Jutila M., Transformation formulae for Dirichlet polynomials, J. Number Theory, 1984, 18(2), 135–156 http://dx.doi.org/10.1016/0022-314X(84)90049-0 
  10. [10] Jutila M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer, Berlin, 1987 
  11. [11] Katsurada M., Matsumoto K., Asymptotic expansions of the mean values of Dirichlet L-functions, Math. Z., 1991, 208(1), 23–39 http://dx.doi.org/10.1007/BF02571507 Zbl0744.11041
  12. [12] Katsurada M., Matsumoto K., A weighted integral approach to the mean square of Dirichlet L-functions, In: Number Theory and its Applications, Kyoto, November 10–14, 1997, Dev. Math., 2, Kluwer, Dordrecht, 1999, 199–229 Zbl0966.11036
  13. [13] Matsumoto K., Recent developments in the mean square theory of the Riemann zeta and other zeta-functions, In: Number Theory, Trends Math., Birkhäuser, Basel 2000, 241–286 Zbl0959.11036
  14. [14] Matsumoto K., On the mean square of the product of ζ(s) and a Dirichlet polynomial, Comment. Math. Univ. St. Pauli, 2004, 53(1), 1–21 
  15. [15] Motohashi Y., A note on the mean value of the zeta and L-functions. I, Proc. Japan Acad. Ser. A Math. Sci., 1985, 61(7), 222–224 http://dx.doi.org/10.3792/pjaa.61.222 
  16. [16] Motohashi Y., A note on the mean value of the zeta and L-functions. V, Proc. Japan Acad. Ser. A Math. Sci., 1986, 62(10), 399–401 http://dx.doi.org/10.3792/pjaa.62.399 
  17. [17] Steuding J., On simple zeros of the Riemann zeta-function in short intervals on the critical line, Acta Math. Hungar., 2002, 96(4), 259–308 http://dx.doi.org/10.1023/A:1019767816190 Zbl1012.11080
  18. [18] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 Zbl0042.07901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.