Eigenvalue results for pseudomonotone perturbations of maximal monotone operators

In-Sook Kim; Jung-Hyun Bae

Open Mathematics (2013)

  • Volume: 11, Issue: 5, page 851-864
  • ISSN: 2391-5455

Abstract

top
Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator λT + C when λ is not an eigenvalue for the pair (T, C), T being single-valued and densely defined.

How to cite

top

In-Sook Kim, and Jung-Hyun Bae. "Eigenvalue results for pseudomonotone perturbations of maximal monotone operators." Open Mathematics 11.5 (2013): 851-864. <http://eudml.org/doc/269385>.

@article{In2013,
abstract = {Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator λT + C when λ is not an eigenvalue for the pair (T, C), T being single-valued and densely defined.},
author = {In-Sook Kim, Jung-Hyun Bae},
journal = {Open Mathematics},
keywords = {Eigenvalues; Maximal monotone operators; Pseudomonotone operators; Degree theory; nonlinear inclusions; eigenvalues; maximal monotone operators; pseudomonotone operators; degree theory},
language = {eng},
number = {5},
pages = {851-864},
title = {Eigenvalue results for pseudomonotone perturbations of maximal monotone operators},
url = {http://eudml.org/doc/269385},
volume = {11},
year = {2013},
}

TY - JOUR
AU - In-Sook Kim
AU - Jung-Hyun Bae
TI - Eigenvalue results for pseudomonotone perturbations of maximal monotone operators
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 851
EP - 864
AB - Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator λT + C when λ is not an eigenvalue for the pair (T, C), T being single-valued and densely defined.
LA - eng
KW - Eigenvalues; Maximal monotone operators; Pseudomonotone operators; Degree theory; nonlinear inclusions; eigenvalues; maximal monotone operators; pseudomonotone operators; degree theory
UR - http://eudml.org/doc/269385
ER -

References

top
  1. [1] Brezis H., Crandall M.G., Pazy A., Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., 1970, 23(1), 123–144 http://dx.doi.org/10.1002/cpa.3160230107 Zbl0182.47501
  2. [2] Browder F.E., Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci. U.S.A., 1983, 80(6), 1771–1773 http://dx.doi.org/10.1073/pnas.80.6.1771 Zbl0533.47051
  3. [3] Browder F.E., Hess P., Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., 1972, 11(3), 251–294 http://dx.doi.org/10.1016/0022-1236(72)90070-5 
  4. [4] Fitzpatrick P.M., Petryshyn W.V., On the nonlinear eigenvalue problem T(u) = λC(u), involving noncompact abstract and differential operators, Boll. Un. Mat. Ital. B (5), 1978, 15(1), 80–107 Zbl0386.47033
  5. [5] Guan Z., Kartsatos A.G., On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces, Nonlinear Anal., 1996, 27(2), 125–141 http://dx.doi.org/10.1016/0362-546X(95)00016-O 
  6. [6] Kartsatos A.G., New results in the perturbation theory of maximal monotone and m-accretive operators in Banach spaces, Trans. Amer. Math. Soc., 1996, 348(5), 1663–1707 http://dx.doi.org/10.1090/S0002-9947-96-01654-6 Zbl0861.47029
  7. [7] Kartsatos A.G., Skrypnik I.V., Normalized eigenvectors for nonlinear abstract and elliptic operators, J. Differential Equations, 1999, 155(2), 443–475 http://dx.doi.org/10.1006/jdeq.1998.3592 
  8. [8] Kartsatos A.G., Skrypnik I.V., Topological degree theories for densely defined mappings involving operators of type (S +), Adv. Differential Equations, 1999, 4(3), 413–456 Zbl0959.47037
  9. [9] Kartsatos A.G., Skrypnik I.V., A new topological degree theory for densely defined quasibounded S ˜ + -perturbations of multivalued maximal monotone operators in reflexive Banach spaces, Abstr. Appl. Anal., 2005, 2, 121–158 http://dx.doi.org/10.1155/AAA.2005.121 
  10. [10] Kartsatos A.G., Skrypnik I.V., On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces, Trans. Amer. Math. Soc., 2006, 358(9), 3851–3881 http://dx.doi.org/10.1090/S0002-9947-05-03761-X Zbl1100.47050
  11. [11] Kim I.-S., Some eigenvalue results for maximal monotone operators, Nonlinear Anal., 2011, 74(17), 6041–6049 http://dx.doi.org/10.1016/j.na.2011.05.081 Zbl1225.47086
  12. [12] Krasnosel’skii M.A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, New York, 1964 
  13. [13] Li H., Huang F., On the nonlinear eigenvalue problem for perturbations of monotone and accretive operators in Banach spaces, Sichuan Daxue Xuebao, 2000, 37(3), 303–309 Zbl0980.47056
  14. [14] Petryshyn W.V., Approximation-Solvability of Nonlinear Functional and Differential Equations, Monogr. Textbooks Pure Appl. Math., 171, Marcel Dekker, New York, 1993 Zbl0772.65040
  15. [15] Zeidler E., Nonlinear Functional Analysis and its Applications. II/B, Springer, New York, 1990 http://dx.doi.org/10.1007/978-1-4612-0985-0 Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.