A classification of the torsion tensors on almost contact manifolds with B-metric

Mancho Manev; Miroslava Ivanova

Open Mathematics (2014)

  • Volume: 12, Issue: 10, page 1416-1432
  • ISSN: 2391-5455

Abstract

top
The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.

How to cite

top

Mancho Manev, and Miroslava Ivanova. "A classification of the torsion tensors on almost contact manifolds with B-metric." Open Mathematics 12.10 (2014): 1416-1432. <http://eudml.org/doc/269396>.

@article{ManchoManev2014,
abstract = {The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.},
author = {Mancho Manev, Miroslava Ivanova},
journal = {Open Mathematics},
keywords = {Torsion; Almost contact manifold; B-metric; Natural connection; almost contact manifolds; natural connections},
language = {eng},
number = {10},
pages = {1416-1432},
title = {A classification of the torsion tensors on almost contact manifolds with B-metric},
url = {http://eudml.org/doc/269396},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Mancho Manev
AU - Miroslava Ivanova
TI - A classification of the torsion tensors on almost contact manifolds with B-metric
JO - Open Mathematics
PY - 2014
VL - 12
IS - 10
SP - 1416
EP - 1432
AB - The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.
LA - eng
KW - Torsion; Almost contact manifold; B-metric; Natural connection; almost contact manifolds; natural connections
UR - http://eudml.org/doc/269396
ER -

References

top
  1. [1] Alexiev V., Ganchev G., On the classification of almost contact metric manifolds, In: Mathematics and Education in Mathematics, Proceedings of 15th Spring Conference of UBM, (6–9 Apr. 1986, Sunny Beach, Bulgaria), Professor Marin Drinov Academic Publishing House, 1986, 155–161, (arXiv:1110.4297) Zbl0817.53017
  2. [2] Bismut J.-M., A local index theorem for non-Kähler manifolds, Math. Ann., 1989, 284, 681–699 http://dx.doi.org/10.1007/BF01443359 Zbl0666.58042
  3. [3] Biquard O., Métriques d’Einstein asymptotiquement symétriques, Astérisque, 2000, 265; English translation: Asymptotically Symmetric Einstein Metrics, SMF/AMS Texts and Monographs, American Mathematical Society, 2006, 13 
  4. [4] Chern S.S., Complex manifolds without potential theory, 2nd ed., Springer-Verlag, 1979 http://dx.doi.org/10.1007/978-1-4684-9344-3 
  5. [5] Friedrich T., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 2002, 6, 303–336 Zbl1127.53304
  6. [6] Friedrich T., Ivanov S., Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math., 2003, 559, 217–236 Zbl1035.53058
  7. [7] Ganchev G., Borisov A., Note on the almost complex manifolds with Norden metric, C. R. Acad. Bulgare Sci., 1986, 39, 31–34 Zbl0608.53031
  8. [8] Ganchev G., Gribachev K., Mihova V., B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.), 1987, 42(56), 107–121 Zbl0638.53021
  9. [9] Ganchev G., Ivanov S., Characteristic curvatures on complex Riemannian manifolds, Riv. Mat. Univ. Parma (5), 1992, 1, 155–162 Zbl0795.53065
  10. [10] Ganchev G., Mihova V., Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Annuaire Univ. Sofia Fac. Math. Inform., 1987, 81, 195–206 Zbl0818.53043
  11. [11] Ganchev G., Mihova V., Gribachev K., Almost contact manifolds with B-metric, Math. Balkanica (N.S.), 1993, 7, 261–276 Zbl0830.53031
  12. [12] Gates S.J., Hull C.M., Roček M., Twisted multiplets and new supersymmetric non-linear σ-models, Nuclear Phys. B, 1984, 248, 157–186 http://dx.doi.org/10.1016/0550-3213(84)90592-3 
  13. [13] Gauduchon P., Hermitian connections and Dirac operators, Boll. Unione Mat. Ital. (7), 1997, 11-B(2), 257–288 Zbl0876.53015
  14. [14] Gray A., Hervella L., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), 1980, 123, 35–58 http://dx.doi.org/10.1007/BF01796539 Zbl0444.53032
  15. [15] Gribacheva D., Natural connections on Riemannian product manifolds, C. R. Acad. Bulgare Sci., 2011, 64, 799–806 Zbl1289.53077
  16. [16] Gribacheva D., Natural connections on conformal Riemannian P-manifolds, C. R. Acad. Bulgare Sci., 2012, 65, 581–590 Zbl1265.53040
  17. [17] Gribacheva D., Mekerov D., Canonical connection on a class of Riemannian almost product manifolds, J. Geom., 2011, 102, 53–71 http://dx.doi.org/10.1007/s00022-011-0098-7 Zbl1243.53011
  18. [18] Ivanov P., Ivanov S., SU(3)-instantons and G 2; Spin(7)-heterotic string solitons, Comm. Math. Phys., 2005, 259, 79–102 http://dx.doi.org/10.1007/s00220-005-1396-4 Zbl1082.53027
  19. [19] Ivanov S., Papadopoulos G., Vanishing theorems and string backgrounds, Classical Quantum Gravity, 2001, 18, 1089–1110 http://dx.doi.org/10.1088/0264-9381/18/6/309 Zbl0990.53078
  20. [20] Lichnerowicz A., Un théorème sur les espaces homogènes complexes, Arch. Math., 1954, 5, 207–215 http://dx.doi.org/10.1007/BF01899340 Zbl0057.38202
  21. [21] Lichnerowicz A., Généralisation de la géométrie kählérienne globale, Colloque de geometrie differentielle, Louvain, 1955, 16, 99–122 
  22. [22] Manev M., Properties of curvature tensors on almost contact manifolds with B-metric, Proceedings of the Jubilee Scientific Session of the Vasil Levski National Military Higher School, Veliko Tarnovo, 1993, 27, 221–227 
  23. [23] Manev M., Contactly conformal transformations of general type of almost contact manifolds with B-metric. Applications, Math. Balkanica (N.S.), 1997, 11, 347–357 Zbl1032.53021
  24. [24] Manev M., Natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric, Int. J. Geom. Methods Mod. Phys., 2012, 9, 1250044 (20 pages) http://dx.doi.org/10.1142/S0219887812500442 Zbl1261.53025
  25. [25] Manev M., Gribachev K., Conformally invariant tensors on almost contact manifolds with B-metric, Serdica Math. J., 1994, 20, 133–147 Zbl0833.53034
  26. [26] Manev M., Ivanova M., A natural connection on some classes of almost contact manifolds with B-metric, C. R. Acad. Bulgare Sci., 2012, 65, 429–436 Zbl1265.53033
  27. [27] Manev M., Ivanova M., Canonical-type connection on almost contact manifolds with B-metric, Ann. Global Anal. Geom., 2013, 43, 397–408 http://dx.doi.org/10.1007/s10455-012-9351-z Zbl1267.53031
  28. [28] Manev M., Staikova M., On almost paracontact Riemannian manifolds of type (n, n), J. Geom., 2001, 72, 108–114 http://dx.doi.org/10.1007/s00022-001-8572-2 Zbl1009.53024
  29. [29] Mekerov D., A connection with skew-symmetric torsion and Kähler curvature tensor on quasi-Kähler manifolds with Norden metric, C. R. Acad. Bulgare Sci., 2008, 61, 1249–1256 Zbl1199.53084
  30. [30] Mekerov D., Canonical connection on quasi-Kähler manifolds with Norden metric, J. Tech. Univ. Plovdiv Fundam. Sci. Appl. Ser. A Pure Appl. Math., 2009, 14, 73–86 
  31. [31] Nakova G., Zamkovoy S., Eleven classes of almost paracontact manifolds with semi-Riemannian metric of (n+1; n), In: Adachi T., Hashimoto H., Hristov M. (Eds.), Recent Progress in Differential Geometry and its Related Fields. Proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields (6–10 Sept. 2010, Veliko Tarnovo, Bulgaria), World Scientific, Singapore, 2011, 119–136 Zbl1264.53038
  32. [32] Naveira A.M., A classification of Riemannian almost-product manifolds, Rend. Mat. Appl. (7), 1983, 3, 577–592 Zbl0538.53045
  33. [33] Staikova M., Gribachev K., Canonical connections and their conformal invariants on Riemannian P-manifolds, Serdica Math. J., 1992, 18, 150–161 Zbl0810.53026
  34. [34] Strominger A., Superstrings with torsion, Nuclear Phys. B, 1986, 274, 253–284 http://dx.doi.org/10.1016/0550-3213(86)90286-5 
  35. [35] Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Jpn. J. Math., 1976, 20, 131–190 Zbl0346.32010
  36. [36] Tanno S., Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 1989, 314, 349–379 http://dx.doi.org/10.1090/S0002-9947-1989-1000553-9 Zbl0677.53043
  37. [37] Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., 1978, 13, 25–41 Zbl0379.53016
  38. [38] Yano K., Differential geometry on complex and almost complex spaces, Pergamon Press, Oxford, 1965 Zbl0127.12405
  39. [39] Yano K., Kon M., Structures on manifolds, World Scientific, 1984 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.