Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis

James Adduci; Boris Mityagin

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 569-589
  • ISSN: 2391-5455

Abstract

top
For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).

How to cite

top

James Adduci, and Boris Mityagin. "Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis." Open Mathematics 10.2 (2012): 569-589. <http://eudml.org/doc/269402>.

@article{JamesAdduci2012,
abstract = {For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).},
author = {James Adduci, Boris Mityagin},
journal = {Open Mathematics},
keywords = {Harmonic oscillator; Hermite functions; Discrete Hilbert transform; Unconditional basis; harmonic oscillator; discrete Hilbert transform; unconditional basis},
language = {eng},
number = {2},
pages = {569-589},
title = {Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis},
url = {http://eudml.org/doc/269402},
volume = {10},
year = {2012},
}

TY - JOUR
AU - James Adduci
AU - Boris Mityagin
TI - Eigensystem of an L 2-perturbed harmonic oscillator is an unconditional basis
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 569
EP - 589
AB - For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).
LA - eng
KW - Harmonic oscillator; Hermite functions; Discrete Hilbert transform; Unconditional basis; harmonic oscillator; discrete Hilbert transform; unconditional basis
UR - http://eudml.org/doc/269402
ER -

References

top
  1. [1] Agranovich M.S., Elliptic Operators on Closed Manifolds, Encyclopaedia Math. Sci., 63, Springer, Berlin-Heidelberg, 1994 
  2. [2] Agranovich M.S., Katsenelenbaum B.Z., Sivov A.N., Voitovich N.N., Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999 Zbl0929.65097
  3. [3] Akhmerova É.F., The asymptotics of the spectrum of nonsmooth perturbations of a harmonic oscillator, Sib. Math. J., 2008, 49(6), 968–984 http://dx.doi.org/10.1007/s11202-008-0093-x Zbl1217.47028
  4. [4] Albeverio S., Motovilov A.K., Shkalikov A.A., Bounds on variation of spectral subspaces under J-self-adjoint perturbations, Integral Equations Operator Theory, 2009, 64(4), 455–486 http://dx.doi.org/10.1007/s00020-009-1702-1 Zbl1197.47024
  5. [5] Askey R., Wainger S., Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 1965, 87(3), 695–708 http://dx.doi.org/10.2307/2373069 Zbl0125.31301
  6. [6] Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys., 2007, 70(6), 947–1018 http://dx.doi.org/10.1088/0034-4885/70/6/R03 
  7. [7] Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 1998, 80(24), 5243–5246 http://dx.doi.org/10.1103/PhysRevLett.80.5243 Zbl0947.81018
  8. [8] Caliceti E., Cannata F., Graffi S., PT symmetric Schrödinger operators: reality of the perturbed eigenvalues, SIGMA Symmetry Integrability Geom. Methods Appl., 2010, 6, #8 Zbl1202.47014
  9. [9] Chelkak D.S., Approximation in the space of spectral data of a perturbed harmonic oscillator, J. Math. Sci. (N. Y.), 2003, 117(3), 4260–4269 http://dx.doi.org/10.1023/A:1024824821966 
  10. [10] Chelkak D., Kargaev P., Korotyaev E., An inverse problem for an harmonic oscillator perturbed by potential: uniqueness, Lett. Math. Phys., 2003, 64(1), 7–21 http://dx.doi.org/10.1023/A:1024985302559 Zbl1030.34085
  11. [11] Chelkak D., Kargaev P., Korotyaev E., Inverse problem for harmonic oscillator perturbed by potential, characterization, Comm. Math. Phys., 2004, 249(1), 133–196 http://dx.doi.org/10.1007/s00220-004-1105-8 Zbl1085.81055
  12. [12] Chelkak D., Kargaev P., Korotyaev E., Inverse problem for harmonic oscillator perturbed by potential, In: Inverse Problems and Spectral Theory, Kyoto, October 28–November 1, 2002, Contemp. Math., 348, American Mathematical Society, Providence, 2004, 93–102 Zbl1073.34013
  13. [13] Chelkak D., Korotyaev E., The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition, Ann. Henri Poincaré, 2007, 8(6), 1115–1150 http://dx.doi.org/10.1007/s00023-007-0330-z Zbl1130.81036
  14. [14] Cramér H., On some classes of series used in mathematical statistics, In: Proceedings of the Sixth Scandinavian Congress of Mathematicians, Copenhagen, 1926, 399–425 Zbl52.0518.01
  15. [15] Dirac P., The Principles of Quantum Mechanics, 4th ed., Internat. Ser. Monogr. Phys., Oxford University Press, London, 1958 Zbl0080.22005
  16. [16] Djakov P., Mityagin B., Bari-Markus property for Riesz projections of Hill operators with singular potentials, In: Functional Analysis and Complex Analysis, Sabanc? University, İstanbul, September 17–21, 2007, Contemp. Math., 481, American Mathematical Society, Providence, 2009, 59–80 Zbl1185.34130
  17. [17] Djakov P., Mityagin B., Bari-Markus property for Riesz projections of 1D periodic Dirac operators, Math. Nach., 2010, 283(3), 443–462 http://dx.doi.org/10.1002/mana.200910003 Zbl1198.34188
  18. [18] Erdélyi A., Asymptotic solutions of differential equations with transition points or singularities, J. Mathematical Phys., 1960, 1(1), 16–26 http://dx.doi.org/10.1063/1.1703631 Zbl0125.04802
  19. [19] Gohberg I.C., Krełn M.G., Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., 18, American Mathematical Society, Providence, 1969 
  20. [20] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952 
  21. [21] Hille E., A class of reciprocal functions, Ann. of Math., 1926, 27(4), 427–464 http://dx.doi.org/10.2307/1967695 Zbl52.0400.02
  22. [22] Hruščëv S.V., Nikol’skił N.K., Pavlov B.S., Unconditional bases of exponentials and of reproducing kernels, In: Complex Analysis and Spectral Theory, Leningrad, 1979/80, Lecture Notes in Math., 864, Springer, Berlin-Heidelberg-New York, 1981, 214–335 
  23. [23] Hunt R., Muckenhoupt B., Wheeden R., Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 1973, 176, 227–251 http://dx.doi.org/10.1090/S0002-9947-1973-0312139-8 Zbl0262.44004
  24. [24] Kato T., Similarity for sequences of projections, Bull. Amer. Math. Soc., 1967, 73(6), 904–905 http://dx.doi.org/10.1090/S0002-9904-1967-11836-6 Zbl0156.38103
  25. [25] Kato T., Perturbation Theory for Linear Operators, 2nd ed. (reprint), Classics Math., Springer, Berlin, 1995 
  26. [26] Katsnelson V.E., Conditions for a system of root vectors of certain classes of operators to be a basis, Funkcional. Anal. i Prilozhen., 1967, 1(2), 39–51 (in Russian) 
  27. [27] Levitan B.M., Sargsjan I.S., Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Transl. Math. Monogr., 39, American Mathematical Society, Providence, 1975 Zbl0302.47036
  28. [28] Markus A.S., A basis of root vectors of a dissipative operator, Dokl. Akad. Nauk SSSR, 1960, 132, 524–527 (in Russian) 
  29. [29] Markus A.S., Introduction to the Spectral Theory of Polynomial Operator Pencils, Transl. Math. Monogr., 71, American Mathematical Society, Providence, 1988 
  30. [30] Mityagin B.S., Convergence of expansions in eigenfunctions of the Dirac operator, Dokl. Akad. Nauk, 2003, 393(4), 456–459 (in Russian) 
  31. [31] Mityagin B., Spectral expansions of one-dimensional periodic Dirac operators, Dyn. Partial Differ. Equ., 2004, 1(2), 125–191 
  32. [32] Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys., 2010, 7(7), 1191–1306 http://dx.doi.org/10.1142/S0219887810004816 Zbl1208.81095
  33. [33] Nevai P., Exact bounds for orthogonal polynomials associated with exponential weights, J. Approx. Theory, 1985, 44(1), 82–85 http://dx.doi.org/10.1016/0021-9045(85)90070-X Zbl0605.42019
  34. [34] Savchuk A.M., Shkalikov A.A., Sturm-Liouville operators with distribution potentials, Tr. Mosk. Mat. Obs., 2003, 64, 159–212 (in Russian) Zbl1066.34085
  35. [35] Skovgaard H., Asymptotic forms of Hermite polynomials, Technical report, 18, Department of Mathematics, California Institute of Technology, Pasadena, 1959 
  36. [36] Szegö G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, American Mathematical Society, New York, 1939 
  37. [37] Thangavelu S., Lectures on Hermite and Laguerre Expansions, Math. Notes, 42, Princeton University Press, Princeton, 1993 
  38. [38] Tkachenko V., Non-selfadjoint Sturm-Liouville operators with multiple spectra, In: Interpolation Theory, Systems Theory and Related Topics, Tel Aviv/Rehovot, 1999, Oper. Theory Adv. Appl., 134, Birkhäuser, Basel, 2002, 403–414 http://dx.doi.org/10.1007/978-3-0348-8215-6_17 
  39. [39] Znojil M., Non-Hermitian supersymmetry and singular, PT -symmetrized oscillators, J. Phys. A, 2002, 35(9), 2341–2352 http://dx.doi.org/10.1088/0305-4470/35/9/320 
  40. [40] Zygmund A., Trigonometric Series, 2nd ed., Cambridge University Press, London-New York, 1968 Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.