Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces
Xiaolong Qin; Yongfu Su; Meijuan Shang
Open Mathematics (2007)
- Volume: 5, Issue: 2, page 345-357
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topXiaolong Qin, Yongfu Su, and Meijuan Shang. "Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces." Open Mathematics 5.2 (2007): 345-357. <http://eudml.org/doc/269414>.
@article{XiaolongQin2007,
abstract = {Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″ n ≤ 1 − ∈ for all n ∈ N and some ∈ > 0. Starting from arbitrary x 1 ∈ K define the sequence x n by
\[\left\lbrace \{\begin\{array\}\{c\}z\_n = P(\alpha ^\{\prime \prime \}\_n T\_3 (PT\_3 )^\{n - 1\} x\_n + (1 - \alpha ^\{\prime \prime \}\_n )x\_n ), \hfill \\ y\_n = P(\alpha ^\{\prime \}\_n T\_2 (PT\_2 )^\{n - 1\} z\_n + (1 - \alpha ^\{\prime \}\_n )x\_n ), \hfill \\ x\_\{n + 1\} = P(\alpha \_n T\_1 (PT\_1 )^\{n - 1\} y\_n + (1 - \alpha \_n )x\_n ). \hfill \\ \end\{array\}\} \right.\]
(i) If the dual E* of E has the Kadec-Klee property then x n converges weakly to a common fixed point p ∈ F; (ii) If T satisfies condition (A′) then x n converges strongly to a common fixed point p ∈ F.
},
author = {Xiaolong Qin, Yongfu Su, Meijuan Shang},
journal = {Open Mathematics},
keywords = {Asymptotically nonexpansive; non-self map; Kadec-Klee property; Uniformly convex; asymptotically nonexpansive mapping; uniformly convex spaces},
language = {eng},
number = {2},
pages = {345-357},
title = {Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces},
url = {http://eudml.org/doc/269414},
volume = {5},
year = {2007},
}
TY - JOUR
AU - Xiaolong Qin
AU - Yongfu Su
AU - Meijuan Shang
TI - Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces
JO - Open Mathematics
PY - 2007
VL - 5
IS - 2
SP - 345
EP - 357
AB - Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″ n ≤ 1 − ∈ for all n ∈ N and some ∈ > 0. Starting from arbitrary x 1 ∈ K define the sequence x n by
\[\left\lbrace {\begin{array}{c}z_n = P(\alpha ^{\prime \prime }_n T_3 (PT_3 )^{n - 1} x_n + (1 - \alpha ^{\prime \prime }_n )x_n ), \hfill \\ y_n = P(\alpha ^{\prime }_n T_2 (PT_2 )^{n - 1} z_n + (1 - \alpha ^{\prime }_n )x_n ), \hfill \\ x_{n + 1} = P(\alpha _n T_1 (PT_1 )^{n - 1} y_n + (1 - \alpha _n )x_n ). \hfill \\ \end{array}} \right.\]
(i) If the dual E* of E has the Kadec-Klee property then x n converges weakly to a common fixed point p ∈ F; (ii) If T satisfies condition (A′) then x n converges strongly to a common fixed point p ∈ F.
LA - eng
KW - Asymptotically nonexpansive; non-self map; Kadec-Klee property; Uniformly convex; asymptotically nonexpansive mapping; uniformly convex spaces
UR - http://eudml.org/doc/269414
ER -
References
top- [1] C.E. Chidume, E.U. Ofoedu and H. Zegeye: “Strong and weak convergence theorems for asymptotically nonexpansive mappings”, J. Math., Anal. Appl., Vol. 280, (2003), pp. 364–374. http://dx.doi.org/10.1016/S0022-247X(03)00061-1 Zbl1057.47071
- [2] W.J. Davis and P. Enflo: Contractive projections on l p -spaces, Analysis at Urbana 1, Cambridge University Press, New York, 1989, pp. 151–161. Zbl0696.46015
- [3] J.G. Falset, W. Kaczor, T. Kuczumow and S. Reich:, “Weak convergence theorems for asymptotically nonexpansive mappings and semigroups”, Nonlinear Anal., Vol. 43, (2001), pp. 377–401. http://dx.doi.org/10.1016/S0362-546X(99)00200-X Zbl0983.47040
- [4] K. Goebel and W.A. Kirk: “A fixed point theorem for asymptotically nonexpansive mappings”, Proc. Amer. Math. Soc., Vol. 35, (1972), pp. 171–174. http://dx.doi.org/10.2307/2038462 Zbl0256.47045
- [5] W. Kaczor: “Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups”, J. Math. Anal. Appl., Vol. 272, (2002), pp. 565–574. http://dx.doi.org/10.1016/S0022-247X(02)00175-0 Zbl1058.47049
- [6] M. Maiti and M.K. Gosh: “Approximating fixed points by Ishikawa iterates”, Bull. Austral. Math. Soc., Vol. 40, (1989), pp. 113–117. Zbl0667.47030
- [7] M.O. Osilike and S.C. Aniagbosor: “Weak and strong convergence theorems for fixed points for asymptotically nonexpansive mappings”, Math. Comput. Modelling, Vol. 32, (2000), pp. 1181–1191. http://dx.doi.org/10.1016/S0895-7177(00)00199-0 Zbl0971.47038
- [8] B.E. Rhoades: “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. Appl., Vol. 183, (1994), pp. 118–120. http://dx.doi.org/10.1006/jmaa.1994.1135
- [9] H.F. Senter and W.G. Doston: “Approximating fixed points of nonexpansive mapping”, Proc. Amer. Math. Soc., Vol. 44(2), (1974), pp. 375–380. http://dx.doi.org/10.2307/2040440 Zbl0299.47032
- [10] J. Schu: “Iterative construction of fixed points of asymptotically nonexpansive mappings”, J. Math. Anal. Appl., Vol. 158, (1991), pp. 407–413. http://dx.doi.org/10.1016/0022-247X(91)90245-U
- [11] J. Schu: “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Austral. Math. Soc., Vol. 43, (1991), pp. 153–159. http://dx.doi.org/10.1017/S0004972700028884 Zbl0709.47051
- [12] N. Shahzad: “Approximating fixed points of non-self nonexpansive mappings in Banach spaces”, Nonlinear Anal., Vol. 61, (2005), pp. 1031–1039. http://dx.doi.org/10.1016/j.na.2005.01.092 Zbl1089.47058
- [13] K.K. Tan and H.K. Xu: “Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process”, J. Math. Anal. Appl., Vol. 178, (1993), pp. 301–308. http://dx.doi.org/10.1006/jmaa.1993.1309 Zbl0895.47048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.