# Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces

Xiaolong Qin; Yongfu Su; Meijuan Shang

Open Mathematics (2007)

- Volume: 5, Issue: 2, page 345-357
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topXiaolong Qin, Yongfu Su, and Meijuan Shang. "Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces." Open Mathematics 5.2 (2007): 345-357. <http://eudml.org/doc/269414>.

@article{XiaolongQin2007,

abstract = {Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″ n ≤ 1 − ∈ for all n ∈ N and some ∈ > 0. Starting from arbitrary x 1 ∈ K define the sequence x n by
\[\left\lbrace \{\begin\{array\}\{c\}z\_n = P(\alpha ^\{\prime \prime \}\_n T\_3 (PT\_3 )^\{n - 1\} x\_n + (1 - \alpha ^\{\prime \prime \}\_n )x\_n ), \hfill \\ y\_n = P(\alpha ^\{\prime \}\_n T\_2 (PT\_2 )^\{n - 1\} z\_n + (1 - \alpha ^\{\prime \}\_n )x\_n ), \hfill \\ x\_\{n + 1\} = P(\alpha \_n T\_1 (PT\_1 )^\{n - 1\} y\_n + (1 - \alpha \_n )x\_n ). \hfill \\ \end\{array\}\} \right.\]
(i) If the dual E* of E has the Kadec-Klee property then x n converges weakly to a common fixed point p ∈ F; (ii) If T satisfies condition (A′) then x n converges strongly to a common fixed point p ∈ F.
},

author = {Xiaolong Qin, Yongfu Su, Meijuan Shang},

journal = {Open Mathematics},

keywords = {Asymptotically nonexpansive; non-self map; Kadec-Klee property; Uniformly convex; asymptotically nonexpansive mapping; uniformly convex spaces},

language = {eng},

number = {2},

pages = {345-357},

title = {Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces},

url = {http://eudml.org/doc/269414},

volume = {5},

year = {2007},

}

TY - JOUR

AU - Xiaolong Qin

AU - Yongfu Su

AU - Meijuan Shang

TI - Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces

JO - Open Mathematics

PY - 2007

VL - 5

IS - 2

SP - 345

EP - 357

AB - Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″ n ≤ 1 − ∈ for all n ∈ N and some ∈ > 0. Starting from arbitrary x 1 ∈ K define the sequence x n by
\[\left\lbrace {\begin{array}{c}z_n = P(\alpha ^{\prime \prime }_n T_3 (PT_3 )^{n - 1} x_n + (1 - \alpha ^{\prime \prime }_n )x_n ), \hfill \\ y_n = P(\alpha ^{\prime }_n T_2 (PT_2 )^{n - 1} z_n + (1 - \alpha ^{\prime }_n )x_n ), \hfill \\ x_{n + 1} = P(\alpha _n T_1 (PT_1 )^{n - 1} y_n + (1 - \alpha _n )x_n ). \hfill \\ \end{array}} \right.\]
(i) If the dual E* of E has the Kadec-Klee property then x n converges weakly to a common fixed point p ∈ F; (ii) If T satisfies condition (A′) then x n converges strongly to a common fixed point p ∈ F.

LA - eng

KW - Asymptotically nonexpansive; non-self map; Kadec-Klee property; Uniformly convex; asymptotically nonexpansive mapping; uniformly convex spaces

UR - http://eudml.org/doc/269414

ER -

## References

top- [1] C.E. Chidume, E.U. Ofoedu and H. Zegeye: “Strong and weak convergence theorems for asymptotically nonexpansive mappings”, J. Math., Anal. Appl., Vol. 280, (2003), pp. 364–374. http://dx.doi.org/10.1016/S0022-247X(03)00061-1 Zbl1057.47071
- [2] W.J. Davis and P. Enflo: Contractive projections on l p -spaces, Analysis at Urbana 1, Cambridge University Press, New York, 1989, pp. 151–161. Zbl0696.46015
- [3] J.G. Falset, W. Kaczor, T. Kuczumow and S. Reich:, “Weak convergence theorems for asymptotically nonexpansive mappings and semigroups”, Nonlinear Anal., Vol. 43, (2001), pp. 377–401. http://dx.doi.org/10.1016/S0362-546X(99)00200-X Zbl0983.47040
- [4] K. Goebel and W.A. Kirk: “A fixed point theorem for asymptotically nonexpansive mappings”, Proc. Amer. Math. Soc., Vol. 35, (1972), pp. 171–174. http://dx.doi.org/10.2307/2038462 Zbl0256.47045
- [5] W. Kaczor: “Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups”, J. Math. Anal. Appl., Vol. 272, (2002), pp. 565–574. http://dx.doi.org/10.1016/S0022-247X(02)00175-0 Zbl1058.47049
- [6] M. Maiti and M.K. Gosh: “Approximating fixed points by Ishikawa iterates”, Bull. Austral. Math. Soc., Vol. 40, (1989), pp. 113–117. Zbl0667.47030
- [7] M.O. Osilike and S.C. Aniagbosor: “Weak and strong convergence theorems for fixed points for asymptotically nonexpansive mappings”, Math. Comput. Modelling, Vol. 32, (2000), pp. 1181–1191. http://dx.doi.org/10.1016/S0895-7177(00)00199-0 Zbl0971.47038
- [8] B.E. Rhoades: “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. Appl., Vol. 183, (1994), pp. 118–120. http://dx.doi.org/10.1006/jmaa.1994.1135
- [9] H.F. Senter and W.G. Doston: “Approximating fixed points of nonexpansive mapping”, Proc. Amer. Math. Soc., Vol. 44(2), (1974), pp. 375–380. http://dx.doi.org/10.2307/2040440 Zbl0299.47032
- [10] J. Schu: “Iterative construction of fixed points of asymptotically nonexpansive mappings”, J. Math. Anal. Appl., Vol. 158, (1991), pp. 407–413. http://dx.doi.org/10.1016/0022-247X(91)90245-U
- [11] J. Schu: “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Austral. Math. Soc., Vol. 43, (1991), pp. 153–159. http://dx.doi.org/10.1017/S0004972700028884 Zbl0709.47051
- [12] N. Shahzad: “Approximating fixed points of non-self nonexpansive mappings in Banach spaces”, Nonlinear Anal., Vol. 61, (2005), pp. 1031–1039. http://dx.doi.org/10.1016/j.na.2005.01.092 Zbl1089.47058
- [13] K.K. Tan and H.K. Xu: “Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process”, J. Math. Anal. Appl., Vol. 178, (1993), pp. 301–308. http://dx.doi.org/10.1006/jmaa.1993.1309 Zbl0895.47048

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.