# Unbounded solutions of the max-type difference equation ${x}_{n+1}=max\left\{\frac{{A}_{n}}{{X}_{n}},\frac{{B}_{n}}{{X}_{n-2}}\right\}$

Christopher Kerbert; Michael Radin

Open Mathematics (2008)

- Volume: 6, Issue: 2, page 307-324
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topChristopher Kerbert, and Michael Radin. "Unbounded solutions of the max-type difference equation \[ x_{n + 1} = max\left\lbrace {\frac{{A_n }}{{X_n }},\frac{{B_n }}{{X_{n - 2} }}} \right\rbrace \]." Open Mathematics 6.2 (2008): 307-324. <http://eudml.org/doc/269416>.

@article{ChristopherKerbert2008,

abstract = {We investigate the boundedness nature of positive solutions of the difference equation \[ x\_\{n + 1\} = max\left\lbrace \{\frac\{\{A\_n \}\}\{\{X\_n \}\},\frac\{\{B\_n \}\}\{\{X\_\{n - 2\} \}\}\} \right\rbrace ,n = 0,1,..., \]
where A nn=0∞ and B nn=0∞ are periodic sequences of positive real numbers.},

author = {Christopher Kerbert, Michael Radin},

journal = {Open Mathematics},

keywords = {difference equation; unbounded solutions; eventually periodic solution; rational difference equation; eventually periodic solutions; max-type difference equation; positive solutions},

language = {eng},

number = {2},

pages = {307-324},

title = {Unbounded solutions of the max-type difference equation \[ x\_\{n + 1\} = max\left\lbrace \{\frac\{\{A\_n \}\}\{\{X\_n \}\},\frac\{\{B\_n \}\}\{\{X\_\{n - 2\} \}\}\} \right\rbrace \]},

url = {http://eudml.org/doc/269416},

volume = {6},

year = {2008},

}

TY - JOUR

AU - Christopher Kerbert

AU - Michael Radin

TI - Unbounded solutions of the max-type difference equation \[ x_{n + 1} = max\left\lbrace {\frac{{A_n }}{{X_n }},\frac{{B_n }}{{X_{n - 2} }}} \right\rbrace \]

JO - Open Mathematics

PY - 2008

VL - 6

IS - 2

SP - 307

EP - 324

AB - We investigate the boundedness nature of positive solutions of the difference equation \[ x_{n + 1} = max\left\lbrace {\frac{{A_n }}{{X_n }},\frac{{B_n }}{{X_{n - 2} }}} \right\rbrace ,n = 0,1,..., \]
where A nn=0∞ and B nn=0∞ are periodic sequences of positive real numbers.

LA - eng

KW - difference equation; unbounded solutions; eventually periodic solution; rational difference equation; eventually periodic solutions; max-type difference equation; positive solutions

UR - http://eudml.org/doc/269416

ER -

## References

top- [1] Briden W.J., Grove E.A., Kent C.M., Ladas G., Eventually periodic solutions of ${x}_{n+1}=max\left\{\frac{1}{{X}_{n}},\frac{{A}_{n}}{{X}_{n-1}}\right\}$ , Comm. Appl. Nonlinear Anal., 1999, 6, 31–43
- [2] Briden W.J., Grove E.A., Ladas G., McGrath L.C., On the nonautonomous equation ${x}_{n+1}=max\left\{\frac{{A}_{n}}{{X}_{n}},\frac{{B}_{n}}{{X}_{n-2}}\right\}$ , New developments in difference equations and applications, Proceedings of the Third International Conference on Difference Equations and Applications (1–5 Sept. 1997 Taipei Taiwan), Gordon and Breach, Amsterdam, 1999, 49–73
- [3] Grove E.A., Kent C.M., Ladas G., Radin M.A., On ${x}_{n+1}=max\left\{\frac{1}{{X}_{n}},\frac{{A}_{n}}{{X}_{n-1}}\right\}$ with a period 3 parameter, Fields Inst. Commun., 2001, 29, 161–180 Zbl0980.39012
- [4] Kent C.M., Radin M.A., On the boundedness nature of positive solutions of the difference equation ${x}_{n+1}=max\left\{\frac{{A}_{n}}{{X}_{n}},\frac{{B}_{n}}{{X}_{n-2}}\right\}$ with periodic parameters, Proceedings of the Third International DCDIS Conference on Engineering Applications and Computational Algorithms (15 May 2003 Guelph Canada), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2003, 11–15

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.