On the calculation of the Dunkl-Williams constant of normed linear spaces
Hiroyasu Mizuguchi; Kichi-Suke Saito; Ryotaro Tanaka
Open Mathematics (2013)
- Volume: 11, Issue: 7, page 1212-1227
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHiroyasu Mizuguchi, Kichi-Suke Saito, and Ryotaro Tanaka. "On the calculation of the Dunkl-Williams constant of normed linear spaces." Open Mathematics 11.7 (2013): 1212-1227. <http://eudml.org/doc/269422>.
@article{HiroyasuMizuguchi2013,
abstract = {Recently, Jiménez-Melado et al. [Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310] defined the Dunkl-Williams constant DW(X) of a normed linear space X. In this paper we present some characterizations of this constant. As an application, we calculate DW(ℓ2-ℓ∞) in the Day-James space ℓ2-ℓ∞.},
author = {Hiroyasu Mizuguchi, Kichi-Suke Saito, Ryotaro Tanaka},
journal = {Open Mathematics},
keywords = {Dunkl-Williams constant; Birkhoff-James orthogonality; norming functional},
language = {eng},
number = {7},
pages = {1212-1227},
title = {On the calculation of the Dunkl-Williams constant of normed linear spaces},
url = {http://eudml.org/doc/269422},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Hiroyasu Mizuguchi
AU - Kichi-Suke Saito
AU - Ryotaro Tanaka
TI - On the calculation of the Dunkl-Williams constant of normed linear spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 7
SP - 1212
EP - 1227
AB - Recently, Jiménez-Melado et al. [Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310] defined the Dunkl-Williams constant DW(X) of a normed linear space X. In this paper we present some characterizations of this constant. As an application, we calculate DW(ℓ2-ℓ∞) in the Day-James space ℓ2-ℓ∞.
LA - eng
KW - Dunkl-Williams constant; Birkhoff-James orthogonality; norming functional
UR - http://eudml.org/doc/269422
ER -
References
top- [1] Alonso J., Some properties of Birkhoff and isosceles orthogonality in normed linear spaces, In: Inner Product Spaces and Applications, Pitman Res. Notes Math. Ser., 376, Longman, Harlow, 1997, 1–11 Zbl0898.46019
- [2] Alonso J., Martini H., Mustafaev Z., On orthogonal chords in normed planes, Rocky Mountain J. Math., 2011, 41(1), 23–35 http://dx.doi.org/10.1216/RMJ-2011-41-1-23[Crossref] Zbl1214.52001
- [3] Al-Rashed A.M., Norm inequalities and characterizations of inner product spaces, J. Math. Anal. Appl., 1993, 176(2), 587–593 http://dx.doi.org/10.1006/jmaa.1993.1233[Crossref]
- [4] Birkhoff G., Orthogonality in linear metric spaces, Duke Math. J., 1935, 1(2), 169–172 http://dx.doi.org/10.1215/S0012-7094-35-00115-6[Crossref] Zbl0012.30604
- [5] Dadipour F., Fujii M., Moslehian M.S., Dunkl-Williams inequality for operators associated with p-angular distance, Nihonkai Math. J., 2010, 21(1), 11–20 Zbl1225.47020
- [6] Dadipour F., Moslehian M.S., An approach to operator Dunkl-Williams inequalities, Publ. Math. Debrecen, 2011, 79(1-2), 109–118 http://dx.doi.org/10.5486/PMD.2011.4936[Crossref][WoS] Zbl1262.47026
- [7] Day M.M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc., 1947, 62, 320–337 http://dx.doi.org/10.1090/S0002-9947-1947-0022312-9[Crossref] Zbl0034.21703
- [8] Dunkl C.F., Williams K.S., A simple norm inequality, Amer. Math. Monthly, 1964, 71(1), 53–54 http://dx.doi.org/10.2307/2311304[Crossref] Zbl0178.16202
- [9] James R.C., Orthogonality in normed linear spaces, Duke Math. J., 1945, 12(2), 291–302 http://dx.doi.org/10.1215/S0012-7094-45-01223-3[Crossref] Zbl0060.26202
- [10] James R.C., Inner product in normed linear spaces, Bull. Amer. Math. Soc., 1947, 53(6), 559–566 http://dx.doi.org/10.1090/S0002-9904-1947-08831-5[Crossref] Zbl0041.43701
- [11] James R.C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 1947, 61(2), 265–292 http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4[Crossref]
- [12] Jiménez-Melado A., Llorens-Fuster E., Mazcuñán-Navarro E.M., The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl., 2008, 342(1), 298–310 http://dx.doi.org/10.1016/j.jmaa.2007.11.045[Crossref][WoS] Zbl1151.46009
- [13] Kato M., Saito K.-S., Tamura T., Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 2007, 10(2), 451–460 Zbl1121.46019
- [14] Kirk W.A., Smiley M.F., Another characterization of inner product spaces, Amer. Math. Monthly, 1964, 71(8), 890–891 http://dx.doi.org/10.2307/2312400[Crossref]
- [15] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998 http://dx.doi.org/10.1007/978-1-4612-0603-3[Crossref]
- [16] Moslehian M.S., Dadipour F., Rajic R., Maric A., A glimpse at the Dunkl-Williams inequality, Banach J. Math. Anal., 2011, 5(2), 138–151 Zbl1225.47022
- [17] Nilsrakoo W., Saejung S., The James constant of normalized norms on R2, J. Inequal. Appl., 2006, #26265 Zbl1104.46007
- [18] Pečaric J., Rajic R., Inequalities of the Dunkl-Williams type for absolute value operators, J. Math. Inequal., 2010, 4(1), 1–10 http://dx.doi.org/10.7153/jmi-04-01[Crossref] Zbl1186.26020
- [19] Saito K.-S., Tominaga M., A Dunkl-Williams type inequality for absolute value operators, Linear Algebra Appl., 2010, 432(12), 3258–3264 http://dx.doi.org/10.1016/j.laa.2010.01.016[WoS][Crossref] Zbl1195.26044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.