Optimal time and space regularity for solutions of degenerate differential equations

Alberto Favaron

Open Mathematics (2009)

  • Volume: 7, Issue: 2, page 249-271
  • ISSN: 2391-5455

Abstract

top
We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.

How to cite

top

Alberto Favaron. "Optimal time and space regularity for solutions of degenerate differential equations." Open Mathematics 7.2 (2009): 249-271. <http://eudml.org/doc/269425>.

@article{AlbertoFavaron2009,
abstract = {We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.},
author = {Alberto Favaron},
journal = {Open Mathematics},
keywords = {Degenerate evolution equations; Optimal regularity; degenerate evolution equations},
language = {eng},
number = {2},
pages = {249-271},
title = {Optimal time and space regularity for solutions of degenerate differential equations},
url = {http://eudml.org/doc/269425},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Alberto Favaron
TI - Optimal time and space regularity for solutions of degenerate differential equations
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 249
EP - 271
AB - We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.
LA - eng
KW - Degenerate evolution equations; Optimal regularity; degenerate evolution equations
UR - http://eudml.org/doc/269425
ER -

References

top
  1. [1] Cross R., Multivaluedlinearoperators, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1998 
  2. [2] Favaron A., Lorenzi A., Gradient estimates for solutions of parabolic differential equations degenerating at infinity, Adv. Differential Equations, 2007, 12, 435–460 Zbl1152.35013
  3. [3] Favini A., Lorenzi A., Tanabe H., Singular integro-differential equations of parabolic type, Adv. Differential Equations, 2002, 7, 769–798 Zbl1033.45010
  4. [4] Favini A., Lorenzi A., Tanabe H., Yagi A., An L p-approach to singular linear parabolic equations in bounded domains, Osaka J. Math., 2005, 42, 385–406 Zbl1082.35073
  5. [5] Favini A., Yagi A., Space and time regularity for degenerate evolution equations, J. Math. Soc. Japan, 1992, 44, 331–350 http://dx.doi.org/10.2969/jmsj/04420331[Crossref] Zbl0758.35048
  6. [6] Favini A., Yagi A., Mulltivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. (4), 1993, 163, 353–384 http://dx.doi.org/10.1007/BF01759029[Crossref] Zbl0786.47037
  7. [7] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1999 Zbl0913.34001
  8. [8] Favini A., Yagi A., Quasilinear degenerate evolution equations in Banach spaces, J. Evol. Equ., 2004, 4, 421–449 http://dx.doi.org/10.1007/s00028-004-0169-4[Crossref] Zbl1072.35104
  9. [9] Hille E., Phillips R.S., Functional analysis and semi-groups (revised edition), American Mathematical Society, Providence, R.I., 1957 Zbl0078.10004
  10. [10] Lorenzi A., Tanabe H., Inverse and direct problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions, Lect. Notes Pure Appl. Math., 2006, 251, 197–243 http://dx.doi.org/10.1201/9781420011135.ch12[Crossref] Zbl1106.45302
  11. [11] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995 Zbl0816.35001
  12. [12] Mel’nikova I.V., The Cauchy problem for an inclusion in Banach spaces and distribution spaces, Sib. Math. J., 2001, 42, 751–765 http://dx.doi.org/10.1023/A:1010453716613[Crossref] 
  13. [13] Periago F., Global existence, uniqueness, and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., 2003, 280, 413–423 http://dx.doi.org/10.1016/S0022-247X(03)00126-4[Crossref] Zbl1029.34048
  14. [14] Sinestrari E., On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 1985, 107, 16–66 http://dx.doi.org/10.1016/0022-247X(85)90353-1[Crossref] 
  15. [15] Taira K., On a degenerate oblique derivative problem with interior boundary conditions, Proc. Japan Acad., 1976, 52, 484–487 http://dx.doi.org/10.3792/pja/1195518211[Crossref] Zbl0371.35010
  16. [16] Taira K., The theory of semigroups with weak singularity and its application to partial differential equations, Tsukuba J. Math., 1989, 13, 513–562 Zbl0695.47031
  17. [17] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland Publishing Co., Amsterdam-New York, 1978 
  18. [18] von Wahl W., Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raümen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1972, 231–258 (inGerman) Zbl0251.35052
  19. [19] von Wahl W., Neue Resolventenabschätzungen für elliptische Differentialoperatoren und semilineare parabolische Gleichungen, Abh. Math. Sem. Univ. Hamburg, 1977, 46, 179–204 (inGerman) http://dx.doi.org/10.1007/BF02993019[Crossref] Zbl0408.35031
  20. [20] Wild C., Semi-groupes de croissance α < 1 holomorphes, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285, A437–A440 (in French) Zbl0359.47024
  21. [21] Yagi A., Generation theorem of semigroup for multivalued linear operators, Osaka J. Math., 1991, 28, 385–410 Zbl0812.47045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.