Optimal time and space regularity for solutions of degenerate differential equations
Open Mathematics (2009)
- Volume: 7, Issue: 2, page 249-271
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAlberto Favaron. "Optimal time and space regularity for solutions of degenerate differential equations." Open Mathematics 7.2 (2009): 249-271. <http://eudml.org/doc/269425>.
@article{AlbertoFavaron2009,
abstract = {We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.},
author = {Alberto Favaron},
journal = {Open Mathematics},
keywords = {Degenerate evolution equations; Optimal regularity; degenerate evolution equations},
language = {eng},
number = {2},
pages = {249-271},
title = {Optimal time and space regularity for solutions of degenerate differential equations},
url = {http://eudml.org/doc/269425},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Alberto Favaron
TI - Optimal time and space regularity for solutions of degenerate differential equations
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 249
EP - 271
AB - We derive optimal regularity, in both time and space, for solutions of the Cauchy problem related to a degenerate differential equation in a Banach space X. Our results exhibit a sort of prevalence for space regularity, in the sense that the higher is the order of regularity with respect to space, the lower is the corresponding order of regularity with respect to time.
LA - eng
KW - Degenerate evolution equations; Optimal regularity; degenerate evolution equations
UR - http://eudml.org/doc/269425
ER -
References
top- [1] Cross R., Multivaluedlinearoperators, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1998
- [2] Favaron A., Lorenzi A., Gradient estimates for solutions of parabolic differential equations degenerating at infinity, Adv. Differential Equations, 2007, 12, 435–460 Zbl1152.35013
- [3] Favini A., Lorenzi A., Tanabe H., Singular integro-differential equations of parabolic type, Adv. Differential Equations, 2002, 7, 769–798 Zbl1033.45010
- [4] Favini A., Lorenzi A., Tanabe H., Yagi A., An L p-approach to singular linear parabolic equations in bounded domains, Osaka J. Math., 2005, 42, 385–406 Zbl1082.35073
- [5] Favini A., Yagi A., Space and time regularity for degenerate evolution equations, J. Math. Soc. Japan, 1992, 44, 331–350 http://dx.doi.org/10.2969/jmsj/04420331[Crossref] Zbl0758.35048
- [6] Favini A., Yagi A., Mulltivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. (4), 1993, 163, 353–384 http://dx.doi.org/10.1007/BF01759029[Crossref] Zbl0786.47037
- [7] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1999 Zbl0913.34001
- [8] Favini A., Yagi A., Quasilinear degenerate evolution equations in Banach spaces, J. Evol. Equ., 2004, 4, 421–449 http://dx.doi.org/10.1007/s00028-004-0169-4[Crossref] Zbl1072.35104
- [9] Hille E., Phillips R.S., Functional analysis and semi-groups (revised edition), American Mathematical Society, Providence, R.I., 1957 Zbl0078.10004
- [10] Lorenzi A., Tanabe H., Inverse and direct problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions, Lect. Notes Pure Appl. Math., 2006, 251, 197–243 http://dx.doi.org/10.1201/9781420011135.ch12[Crossref] Zbl1106.45302
- [11] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995 Zbl0816.35001
- [12] Mel’nikova I.V., The Cauchy problem for an inclusion in Banach spaces and distribution spaces, Sib. Math. J., 2001, 42, 751–765 http://dx.doi.org/10.1023/A:1010453716613[Crossref]
- [13] Periago F., Global existence, uniqueness, and continuous dependence for a semilinear initial value problem, J. Math. Anal. Appl., 2003, 280, 413–423 http://dx.doi.org/10.1016/S0022-247X(03)00126-4[Crossref] Zbl1029.34048
- [14] Sinestrari E., On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 1985, 107, 16–66 http://dx.doi.org/10.1016/0022-247X(85)90353-1[Crossref]
- [15] Taira K., On a degenerate oblique derivative problem with interior boundary conditions, Proc. Japan Acad., 1976, 52, 484–487 http://dx.doi.org/10.3792/pja/1195518211[Crossref] Zbl0371.35010
- [16] Taira K., The theory of semigroups with weak singularity and its application to partial differential equations, Tsukuba J. Math., 1989, 13, 513–562 Zbl0695.47031
- [17] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland Publishing Co., Amsterdam-New York, 1978
- [18] von Wahl W., Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raümen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1972, 231–258 (inGerman) Zbl0251.35052
- [19] von Wahl W., Neue Resolventenabschätzungen für elliptische Differentialoperatoren und semilineare parabolische Gleichungen, Abh. Math. Sem. Univ. Hamburg, 1977, 46, 179–204 (inGerman) http://dx.doi.org/10.1007/BF02993019[Crossref] Zbl0408.35031
- [20] Wild C., Semi-groupes de croissance α < 1 holomorphes, C. R. Acad. Sci. Paris Sér. A-B, 1977, 285, A437–A440 (in French) Zbl0359.47024
- [21] Yagi A., Generation theorem of semigroup for multivalued linear operators, Osaka J. Math., 1991, 28, 385–410 Zbl0812.47045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.